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 Abstract In warm glow models, an agent may prefer one alternative but aspire to
 choose another. The agent chooses her aspiration if she gets a sufficiently large warm
 glow payoff for acting as she aspires. This basic framework is widely used in models of

 turnout in elections and contributions to public goods, but is often criticized for being
 ad hoc. In this paper, we provide choice-theoretic foundations for warm glow theory.
 We characterize the empirical content of warm glow theory, show how to infer the
 core elements of the model from data and show that it is possible to predict behavior
 even when preferences and aspirations are not revealed. Our results provide support
 for assumptions often made in the literature and suggest new applications for warm
 glow models.
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 502 V. Cherepanov et al.

 1 Introduction

 In warm glow models an agent may prefer one alternative but aspire to choose another.

 An agent's aspiration is often understood as the alternative she thinks she ought to
 choose on ethical grounds. The agent receives a warm glow payoff for acting in
 accordance with her aspirations. If her warm glow payoff is sufficiently large, the agent

 may act as she aspires even if the action taken is costly and near inconsequential.
 Warm glow models are used to accommodate a wide range of behavior including

 voting in large elections where the impact of a single vote is negligible. Agents moti-
 vated by warm glow payoffs vote because they think they should and not because
 they think a single vote may plausibly change the outcome. Warm glow models have
 also been used extensively in public good provision models. The model captures the
 idea that people may be motivated to act in socially beneficial ways (such as helping
 others, making philanthropic contributions, punishing socially undesirable behavior)
 at a private cost to themselves.

 While warm glow models are used widely, they remain unaxiomatized. The contri-
 bution of this paper is to provide choice-theoretic foundations for warm glow theory,
 to show how to identify core elements of the model from data and to suggest new
 applications for the theory.

 The standard formulation of warm glow theory combines instrumental and warm
 glow payoffs. For example, the overall payoff for choosing x is

 f;/ v [m(jc) + D if x is an aspiration /1X
 U(x) f;/ v = { , . • (') /1X

 ļ u(x) , . otherwise •

 where u (x) is the instrumental payoff associated with the choice of x and D > 0 is
 the warm glow payoff received when the agent aspires to choose x.
 A well-known example of this basic structure is found in Riker and Ordeshook

 (1968). Their model reduces to a payoff for voting given by the formula

 pAu - c + D

 where p is the probability an agent's vote is pivotal, Au is the difference in payoff
 between the favored candidate and his opponent being elected, c is the cost of voting
 and D is the warm glow payoff received by voting for the favored candidate.1 An
 agent votes if and only if the payoff for voting is positive. Riker and Ordeshook find
 some empirical support for their model, but left open the question of how to identify
 the core elements of the theory from data. In particular, it remains unclear whether
 votes reflects preferences or aspirations.

 1 Andreoni 1989 writes a more complex warm glow utility function as follows:

 U = U (y. Y.K)

 where y is the agent s consumption of private goods, Y is the total supply of the public good, and # is the
 warm glow the agent experiences by virtue of giving.

 Springer
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 Revealed preferences and aspirations 503

 The need for choice-theoretic foundations for warm glow theory may be easily seen
 in the context of contribution to public goods problems. Consider a decision maker
 who aspires to donate as much as solicited. She is asked to make a small donation (5)
 and she does so. That is, 5 is chosen over n (no donation). However, when she is asked

 to make either a small donation or a large donation (/), then she chooses not to donate
 at all. So, n is chosen over s and /.

 In effect, the introduction of the option to donate at a higher level reduces dona-
 tions. Similar behavior is observed in the field study of Berger and Smith (1997).
 More important from the perspective of standard economic theory such choices violate
 WARP (the weak axiom of revealed preference). Warm glow theory easily accommo-
 dates this behavior. It suffices to assume that warm glow payoffs are large enough to
 compensate for the cost of the small donation but not for the cost of a large one.2
 This example illustrates that the standard choice-theoretic foundations for utility

 functions do not apply either to overall payoff functions (U) or to instrumental payoffs
 ( u ). To see this, note that U is not a cardinal representation of an order over alternatives

 and u is not equated with choice (because u(x) greater than u(y) is not equivalent to
 X chosen over y).
 One objective of this paper is to provide proper choice-theoretic foundations for

 warm glow theory. We axiomatize the warm glow model and show how to make suit-
 able inferences about agents' preferences under the warm glow framework. Because
 the standard approach equating choice with preferences does not apply in warm glow
 models, there is a need to show how to deduce preferences from choice in these mod-
 els. It should be noted that we consider the simple warm glow model in (1) and not
 more complex ones (e.g., Feddersen and Sandroni 2006 and Andreoni 1989). While
 the model in ( 1 ) is a simplification, it allows us to get directly at the crucial feature of

 warm glow models: the idea that aspiration is chosen only when the required sacrifice
 in utility is not too large. We want to demonstrate that this central feature of warm
 glow models is observationally meaningful.
 It will be helpful for our purposes to define an ordinal warm glow model in the tra-

 dition of the revealed preference literature. In this model, an agent makes choices from
 subsets of alternatives called issues. The agent's choice is determined by a preference
 relation (associated with the utility w), an aspiration function and a tolerance function.

 The aspiration function determines which actions deliver the warm glow payoff (i.e.,
 the aspiration). The tolerance function determines which actions, within each issue,
 are sufficiently costly so that they will not be chosen even if they are an aspiration. So,
 the agent chooses her aspiration if and only if she can tolerate it. This ordinal model of
 warm glow is observationally equivalent to warm glow model in ( 1 ). In cardinal warm
 glow models, Dee is willing to sacrifice utility in order to act as she aspires, provided
 that this sacrifice is not too large (i.e., smaller than D utiles). The ordinal model of
 warm glow is a first step in the determination of choice-theoretic foundations to this

 idea of preference intensity and sacrifice of a limited quantity of utility in order to
 satisfy an aspiration.

 2 It is critical here that the action that Dee aspires may be issue dependent. Thus, Dee may get a warm glow
 payoff D for different actions in different issues. In this example. Dee gets a warm glow payoff for a small
 donation only when this is the highest solicited donation.
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 If no structure is imposed on a nonobservable aspiration function, then any choice
 function can be accommodated by warm glow models. It suffices to assume that all
 actions are tolerable and the decision maker' choice is her aspiration. Clearly, such
 a model has no empirical content. To make progress, we must assume either that
 aspirations are observed or that they have some logical structure (or both).
 Let us start with the assumption that aspirations are observed. Here, the main

 difficulty is that if the decision maker chooses her aspiration, then there is no direct
 way to make inferences about preferences (because it is unclear whether her choices
 are motivated by her preferences, by her aspirations or by both). However, if an agent

 aspires to y but chooses jc, then we can directly infer that y is not tolerated when x
 is available. This reveals an intolerance relation. That is, Dee's utility for jc is greater
 than her utility for y plus D and so x is so much better than y that y will never be
 chosen when x is available (even if y is an aspiration). In addition, jc must be preferred
 to all other alternative she might have chosen instead (i.e., if the chosen jc is not her
 aspiration, then it must be her preferred choice). This reveals a preference. These
 are simple inferences over intolerances and preferences that can be made directly. A
 key point in this paper is that there are more complex and indirect inferences that
 can be made by chaining together direct inferences. These indirect inferences can, in
 turn, be chained together to produce even further inferences. In spite of this difficulty,

 we provide an explicit formula that takes, as input, data in the form of arbitrary
 choices and aspirations and returns, as output, ( 1 ) a way to determine whether the
 warm glow model can accommodate the data, and (2) all possible inferences over
 preferences and tolerances. In addition, if aspirations are ordered, then the empirical
 content of warm glow theory can be fully characterized by two simple and elegant
 axioms.

 So far, our results characterize the inferences of warm glow theory when both
 choices and aspirations are used as input. This is the traditional approach in applied
 warm glow models where aspirations are typically assumed to be commonly perceived
 ethical actions such as voting, contributing to public goods and performing activities
 often deemed to be praiseworthy. Our results can also be used to make predictions on
 observable behavior that follow under the null hypothesis that the warm glow model
 holds and aspirations are exogenously determined. Naturally, these predictions may
 not come about. This shows a combined test of the warm glow model and assumptions
 about aspirations.

 In several situations, there may be doubts about whether it is possible to make
 legitimate assumptions about aspirations. In this case, aspirations must be assumed to
 be unobserved. Then, as argued above, it is necessary to assume some logical structure
 on aspirations: We assume that they are ordered and show that, in this case, the model
 is falsifiable and must satisfy (at least) the following property: If there is a set of issues
 that each contain an alternative jc that is never chosen, then jc cannot be chosen in the

 union of those issues. For example, if jc is not chosen in the sets {jc , y } and {a:, z}, then
 jc cannot be chosen in the set {jc, y, z}. We can make this prediction even though it is
 not possible to determine why jc is rejected: It might be, for example, that x is most
 preferred but tolerates aspirations y and z, or it might be that x is the aspiration but
 it is not tolerated. Therefore, if aspirations are assumed to be ordered, it is possible
 to make predictions over behavior without being able to infer motivations. A full

 £) Springer
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 Revealed preferences and aspirations 505

 characterization of the empirical content of the warm glow model when aspirations
 are ordered and unobserved is still an open (and, we believe, hard) question.
 The paper proceeds as follows. In Sect. 2, we provide a literature review that links

 our approach to the literature on warm glow decision making and a broader class of
 behavioral decision models. In Sect. 3, we present the formal model and prove that it
 is observationally equivalent to the standard warm glow model. In Sect. 4, we state the
 formal results in the case when aspirations are observable. In Sect. 5, we explore the
 model when aspirations are not observable. Section 6 considers possible extensions
 of our model. Section 7 concludes.

 2 Literature review

 In political science, the leading example of warm glow theory is Riker and Ordeshook
 (1968). Feddersen and Sandroni (2006) build upon their model. They endogenize
 aspirations and exploit the predictability of aspirations to generate comparative statics.
 Coate and Conlin (2004) find support for the Feddersen and Sandroni model in the
 field. Feddersen et al. (2009) find support for a particular form of the ethical voter
 model in laboratory experiments (see also Shayo and Harel 2012).

 Andreoni (1989) surveys the literature on warm glow giving and develops a warm
 glow model where agents may aspire to contribute to public good. He shows that
 the warm glow payoff may help explain why government spending does not crowd
 out private donations as predicted in standard economic models. Andreoni (2006, pp.
 1 222- 1 223) argues that putting a warm glow motive is "an admittedly ad hoc fix," but
 "the experimental data is overwhelming in its support of warm glow." Most notably,
 Andreoni (1993), Andreoni (1995), Palfrey and Prisbrey (1996), Palfrey and Prisbrey
 (1997) and Andreoni and Miller (2002) find clear evidence of warm glow motives.

 Recent work by Levine and Palfrey (2007) finds that ethical voter models are unnec-

 essary to explain behavior in some laboratory voting experiments. Given the large set
 of models that are consistent with the same behavior it is important to develop an
 empirically grounded methodology that will not only allow selection among alterna-
 tive functional forms of warm glow but also allow an assessment of whether warm
 glow is a useful theory compared to, say, standard economic models.

 The warm glow model can be understood as a dual-self model and, therefore, is
 related to a growing literature in decision theory on multiple selves. Kalai et al. (2002)
 consider a basic model of multiple selves, where choice is optimal according to one of
 the selves. A literature review on multiple-self models can also be found in Cherepanov
 et al. (2012) and Ambrus and Rozen (2008).

 Our approach is closely related to a few lines of research. First, consider models
 on status quo bias (see, among many contributions, Masatlioglu and Ok 2005; Sagi
 2006; Salant and Rubinstein 2008). Under the assumption of observed but possibly
 unordered aspirations, our warm glow model could be reinterpreted as a model of status

 quo bias. For a given issue, one need only relabel an aspiration as the status quo. Dee
 departs from the status quo only if the utility gain is sufficiently large. We consider the

 case of unobserved aspirations and impose the logical structure of ordered aspirations
 to obtain empirical content. Under the reinterpretation of aspiration as status quo, the

 £) Springer
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 assumption of ordered aspirations is problematic because there is no reason for status
 quos to be ordered.
 In our warm glow model, the most that can be observed for a given issue is a choice

 and an aspiration. Aspirations are an idiosyncratic feature of a decision maker and not
 an object that might be subject to experimental manipulation. In contrast, it is entirely
 sensible in status quo models to assume that one can observe, for a given issue, different

 choices as a result of different status quos. That is, unlike our model, the status quo
 literature assumes that the choice C(B,x) may be observed for every issue B and every
 conceivable status quo x e B. So, the input used in this paper to infer the core elements

 of warm glow theory is far more limited than the data used in status quo models. A
 variation of the Limited WARP axiom also holds in status quo models, but we are not
 aware of any clear counterpart to our warm glow axiom or to our main results.
 Our model could also be reinterpreted as a model of temptation and self-control (see,

 among many contributions, Dillenberger and Sadowski 2012; Gul and Pesendorfer
 2001 , and Noor and Takeoka 2010). In this reinterpretation, Dee is tempted to take the
 action she prefers, but she receives a penalty D unless she takes the action she aspires
 (e.g., Dee may aspire to eat healthy foods, but prefers to eat unhealthy foods. So, she
 is tempted to eat unhealthy foods, but receives a psychological penalty D unless she
 eats as she aspires). This simple model of temptation would differ significantly from
 the existing literature. Even though one can find similarities between the warm glow
 payoff and the utility function in Gul and Pesendorfer (2001 ), the connection between

 these two models is more apparent than real. To see this, it may suffice to note that the
 Gul and Pesendorfer (2001) does not accommodate violations of WARP. The model
 of Dillenberger and Sadowski (2012) can accommodate behavioral anomalies at the
 level of menu choices, and the general temptation model of Noor and Takeoka (2010)
 does not accommodate violations of WARP once the choice of menu is fixed. Unlike

 most models of temptation, we do not use choices over menus as input, and, hence,
 one possible way to interpret our model is as model of choice with a fixed menu.
 The nonuse of choices over menus as data also leads to an axiomatic foundation that

 is mostly unrelated to the existing literature. Moreover, a critical contribution in this
 paper is the methodology showing how to identify Dee's preferences and tolerances
 from data. This methodology is both novel and significant given that all multiple-self
 models are prone to identification problems because it is unclear which self produced
 the choice. Finally, we point out that the model of Segal and Sobel (2007) can be
 construed as a warm glow model, although they do not describe it this way, which
 does not accommodate violations of WARP. Shayo and Harel (2012) apply the Segal
 and Sobel (2007) model to turnout problems. A general equilibrium model with warm
 glow preferences can be found in Allouch (2012).

 3 Warm glow theory

 3.1 Basic concepts

 A decision maker, Dee, faces a set of choices over subsets of a finite set of alternatives

 X. A nonempty subset of alternatives B c X is called an issue. Let B be the set of all

 £) Springer
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 Revealed preferences and aspirations 507

 issues with at least two alternatives. A choice function is a mapping C : B - » X such
 that C(B) e B for every B e B.
 An aspiration function is a mapping A : B -> X such that A(B) e B for every

 B e B. Dee's actual choice may differ from her aspiration, so we call the choice
 function C Dee's actual choice function. Given an issue B and aspiration function A,
 let ' A B : B -* {0, 1} be an indicator function such that 'AB{x) = 1 iff jc = A(B).
 That is, 'A B indicates Dee's aspiration in B.
 We consider utility functions u : X - ► W such that u(x) ^ u(y) if x ^ v. So,

 indifference is ruled out. Given an issue B and aspiration function A, let

 UAB(x) = u(x) + D ■ 'A B(x)

 be Dee's utility function plus a warm glow payoff D for acting as she aspires.

 Definition 1 A choice and aspiration function (C, A) : ß X x X isa warm glow
 (choice and aspiration) function if there exists a utility function u and a scalar D > 0
 such that for every issue B e B,

 Ua b(C(B)) > UAB( X) for every x e B, x ¿ C(B). (2)

 That is, warm glow choice functions are produced by optimization of utility plus
 a warm glow payoff for acting as aspired. In the context of choice with an ethical
 component, the main assumption is that Dee aspires to act ethically and receives a
 payoff D if she does so. That is, as long as Dee's aspirations do not require her to
 sacrifice utility greater than D, she acts as she aspires. These sacrifices are not random

 or arbitrary. They are motivated by Dee's desire to act in harmony with her aspirations.
 While (2) is the most basic model of warm glow, it is easy to think of general-

 izations. For example, perhaps in some issues, Dee has no aspirations or more than
 one aspiration. It would be useful to produce choice-theoretic foundations in a variety
 of models of warm glow, but the natural starting point is the benchmark model in
 (2) because this is the simplest and the most common model of warm glow used in
 the literature. Some generalizations (e.g., nonconstant warm glow payoffs and issues
 without aspirations) are considered, below, in this paper.

 3.2 Warm glow theory and preferences

 In this section, we introduce an ordinal model of choice as a first step in the deter-
 mination of choice-theoretic foundations of warm glow theory. Below we show that
 this model is observationally equivalent to the cardinal warm glow model. Hence, the
 model in this subsection can be seen not as a new model, but rather as a convenient

 (for our purposes) reformulation of the warm glow model in (2).
 As above, Dee is endowed with an aspiration function A. Dee is also endowed

 with a preference order R which is an asymmetric, transitive and complete binary
 relation. By standard convention, x R y denotes that x is /^-preferred to y. We say that
 x R-optimizes B and denote this by jc = R(B ), if jc Rb for every b e B, b ^ jc. If

 £) Springer
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 C(B) = R(B ), then issue B is resolved by preference order R. The preference order
 R can be seen as the ordinal counterpart of the utility function u.
 For any given issue, Dee acts as she aspires only if her aspirations are not too

 costly. So, Dee compares her aspiration to her preference and chooses her aspiration
 if and only if her aspiration is tolerable to her. If her aspiration is intolerable, then she
 chooses as she prefers. In the cardinal model of warm glow in (2), tolerance means a
 sacrifice of utility no greater than D. However, to formalize the idea of tolerance in
 an ordinal sense, we endow Dee with a tolerance fiinction r : X -► X that maps
 every alternative a into another alternative r (a) that we call Dee's tolerance limit. The
 alternative r (a) itself and every other alternative that Dee prefers to r (a) are tolerable

 when a is preferred, but any alternative that is /?- worse than r (a) is intolerable.
 For any binary relation /?, let /?= be the binary relation such that x R= y if and

 only if either x R y or x = y. So, if

 A(B)R=r(R(B))

 then Dee's aspiration is tolerable. If

 r (R(B))RA(B)

 then Dee's aspiration is intolerable.
 The tolerance limit r (a) of an alternative a cannot be /?-preferred to a because r (a)

 marks the least attractive option that Dee can tolerate when a is available. In addition,
 if b is intolerable in the presence of a, then it should remain intolerable in the presence
 of an even better alternative. Therefore, Dee's tolerance function r must satisfy

 (a) a /?= r (a), and ^
 (b) if a' Ra then r (a') R=r(a) (weak monotonicity)

 Weak monotonicity is a restrictive condition that is maintained because it is critical
 to equate this model with the basic warm glow model in (2). We now define a warm
 glow choice and aspiration function in terms of a preference order and tolerance
 function.

 Definition 2 A choice and aspiration function (C, A) : B -► X x X is a warm glow
 (choice and aspiration) function if there exists a preference order /?, and a tolerance
 function r that satisfies (3) such that for any issue B e B,

 C(B) = A(B) if A(B) R= r (R(B)) (4)

 C(B) = R(B) if t(R(B)) R A(B) (5)

 That is, Dee chooses as she aspires when her aspiration is tolerable and chooses
 as she prefers otherwise. We now show that this new definition is observationally
 equivalent to Definition 1 .

 Preliminary result 1 A choice and aspiration function (C, A) satisfies Definition 1
 if and only if it also satisfies Definition 2.

 £) Springer
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 Revealed preferences and aspirations 509

 The intuition underlying the preliminary result is simple. In the warm glow model
 of Definition 1, Dee maximizes u(x) + D • 'AB(x). If the utility of Dee's preferred
 choice exceeds, by D, the utility of her aspiration A(B ), then her aspiration is too
 costly and she chooses her most preferred alternative. On the other hand, if Dee's
 preferred choice does not exceed, by D, the utility of her aspiration A(B ), then her
 aspiration is tolerable and she chooses as she aspires. All formal proofs are found in
 the "Appendix."
 The preliminary result demonstrates that warm glow theory can be defined using

 the ordinal concept of preference (and aspiration and tolerance functions). The utility
 function u is associated with the preference order R in the usual manner: High R-
 ranking is associated with higher utility from u. While D is assumed to be constant
 in the cardinal model of Definition 1 , it should be noted that this assumption can be
 relaxed. The preliminary result shows that warm glow models with nonconstant warm
 glow payoffs may also be observationally equivalent to our ordinal model of warm
 glow. Our focus now shifts to delivering choice-theoretic foundation to warm glow
 theory.

 4 Observed aspirations

 In this section, we analyze the basic model under the assumptions that choices and
 aspirations are observable. The general case is notationally involved, and so, we start
 with the special case where aspirations are also assumed to be ordered to convey
 intuitions in a simple and direct way.

 4.1 Ordered and observed aspirations

 An aspiration function A is ordered if for any two pairs of issues B and B' such that
 B ç B' A(B') e B implies A(B) = A(B'). So, an ordered aspiration function must
 satisfy WARP.

 We now characterize the empirical content of warm glow theory under the assump-
 tion of ordered and observed aspirations.

 Definition 3 Let Bs be a set of issues such that choice and aspiration differ: Bs =
 [BeBsX. C(B)^A(B)}.

 By definition, if an issue is in Bs , then choice differs from aspiration. As an example,
 consider the fact while the majority of respondents in surveys say that they intend to
 buy carbon-offsets, few actually do it. Thus, under the assumption that people aspire
 to buy carbon-offsets, the choice not to buy offsets reveals that respondents prefer not
 to buy offsets (because if Dee prefers to act as she aspires then she would). Formally,
 if £ e B' then Dee must prefer her choice C(B) to all feasible alternatives in B.
 Thus, we can define the directly observed preference relation >-ä as follows:

 X >d y <=> X y and there is an issue B e Bs s.t. y e B, x = C ( B ) . (6)

 So, warm glow theory is falsifiable and must satisfy at least the following axiom.

 â Springer
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 510 V. Cherepanov et al.

 Limited WARP: Let B e Bs and Bf e Bs be a pair of issues such that B ç B' .
 Then,

 C(Bf) e B ==> C(B) = C(B'). (7)

 The Limited WARP (LWARP) axiom requires that WARP holds on Bs . It holds
 under warm glow theory because, for all issues in B' Dee's chooses as she prefers.
 However, Limited WARP does not fully characterize the empirical content of warm
 glow theory because, as the example below shows, indirect inferences about prefer-
 ences can also be made.

 Consider the example mentioned in the introduction. Suppose that Dee must decide
 how much money to donate to a charity. Suppose that Dee aspires to contribute as much

 as requested, but she only makes small contributions. So, given the choice between a
 small donation (5) and no donation (n), Dee aspires to a small donation and chooses it.
 However, between no donation and a large donation (/), Dee aspires to a large donation
 but chooses no donation. It follows that Dee prefers a small donation over a large one.
 Too see this assume, by contradiction, that Dee prefers / over s. Dee's choice of a
 small donation implies that Dee can tolerate choosing her aspiration s over n. So, Dee
 must be able to tolerate choosing / (as an aspiration) over n. But this contradicts the
 choice of n when / is the aspiration. Thus, Dee prefers s to /. This inference is indirect
 (i.e., beyond >d) because it is not based on any issue in Bs such that / is available and
 s is the choice.3

 In general, we can indirectly infer that Dee prefers y to z (y ^ind z) if there exists
 an alternative x and issues B' e B< B e Bs such that

 jt 6 £', y = C (£') and x = C (B) , z = A (B) . (8)

 The indirect revealed preference >ind follows by the same argument given in the
 example above. If Dee prefers z to y, then whenever z is her aspiration she can tolerate
 it in the presence of x (because her choice in B' shows that she can tolerate y when x is
 available, and so she can also tolerate an even better alternative z when jc is available).

 But this contradicts her choice of x in B when z was her aspiration. This indirect way
 to infer Dee's preferences leads to the following axiom.

 Warm Glow Axiom: If B e ß,v, C ( B ) e B' and either A ( B ) >d A (/?') or
 A (B) = A (/?'), then Bf e Bs.

 The warm glow (WG) axiom states that if her aspiration in B is too costly (so that
 she cannot tolerate it), then her aspiration in B' must remain too costly provided that
 ( 1 ) the choice in B is available B' and (2) her aspiration in B ' is either the same as in
 B or directly revealed to be less preferred. The intuition behind the warm glow axiom
 is simple: If Dee's aspiration A(B) is too costly when C(B) is available, then an even
 more costly aspiration A ( Bf ) should remain too costly when C(B) is still available.

 1 An alternative way to see this is as follows: The choice of n over / when I is as aspiration implies that
 u(n) > u(l) -I- D. The choice of .9 over n when s is as aspiration implies that u(s) + D > u(n). So,
 u(s) > u(l).
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 Revealed preferences and aspirations 5 1 1

 The warm glow axiom is stated in terms of observable data (because the relation
 >J is defined from choices and aspirations alone). This axiom ensures that revealed
 preferences obtained directly and indirectly do not contradict each other. To see this,
 consider a violation of the warm glow axiom. Let x = C(B ), z = A(B ), y =
 C(Bf) = A(Bf). By 8, y ^,nd z. So, we can indirectly infer that Dee prefers y to z.
 By assumption, either y = z or z >d y. So, we can directly infer that Dee prefers z
 to y.

 The following result states that the empirical content of the warm glow model with
 ordered aspirations is fully characterized by these two axioms.

 Theorem 1 Let (C, A) be a choice and aspiration function such that A is ordered .
 (C, A) isa warm glow function if and only if the LWARP and WG axioms are satisfied .

 Theorem 1 demarcates the empirical scope of the warm glow model with observed
 and ordered aspiration functions. This characterization provides choice-theoretic foun-
 dations for the warm glow model.

 4.2 Predicting behavior

 Theorem 1 provides a general characterization of the predictions that follow from
 warm glow models with observed and ordered aspirations (i.e., violations of Limited
 WARP and the warm glow axiom will not be observed). However, special cases of
 these predictions are also of interest.

 Suppose there are two issues B and Br such that x and y are available in both issues
 and Dee chooses x in B and y in B' . Now assume that Dee is given the choice between
 x and y. Standard theory makes no prediction about what Dee will choose because
 her previous choices of x and y violate WARP. In contrast, warm glow theory predicts
 that Dee will choose as she aspires. To see this, assume that Dee does not choose her
 aspiration (e.g., assume that her aspiration is x and her choice is y). Then, she cannot
 tolerate x in the presence of y. This contradicts her choice of x in B. So, warm glow
 theory not only accommodates some violations of WARP but can exploit behavioral
 anomalies to predict behavior.

 Now suppose that x = C(B) is the choice in B . Consider a subissue Bf c B such
 that x is the aspiration in B' (i.e., x = A(B')). Then, we can predict that x will also
 be chosen in B' . This is another simple prediction that follows from the warm glow
 model. To see this, suppose that another alternative y ^ x is chosen in B' . Then, Dee
 cannot tolerate choosing x rather than y. But then Dee could not have chosen x in B
 since y was also available in B. Thus, if Dee does not choose x in B' , we must reject
 either the warm glow model or the assumption that she aspires to x in B' .

 Two points of interest emerge. First, even though we can predict Dee's choice of
 x in £', we may not be able to determine her motivations for that choice. That is, we
 may not be able to say whether Dee prefers x over alternatives in B' or she chooses x
 because she aspires to and can tolerate it.

 Second, suppose that the behavior predicted above is not satisfied (i.e., x - C(B) =
 A(Bf ), B' c B and x ^ C(B')). If x ^ A(B ), then we have a violation of LWARP,
 and if* = A(B ), then we have a violation of the WG axiom. However, these choices
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 512 V. Cherepanov et al.

 (i.e., X = C(B) = A{B' ), B' c B and x ^ C(B')) violate warm glow theory even if
 aspirations are not required to be orders. To see this, simply note that in the argument

 above, we did not use the assumption of ordered aspirations. Therefore, warm glow
 theory is falsifiable even if aspirations are observed but not necessarily ordered.
 However, the LWARP and WG axioms are not sufficient to characterize warm glow

 theory if aspirations are not necessarily ordered. We illustrate this point with Example 2
 (in the "Appendix"). This example provides a choice and unordered aspiration function
 satisfying the LWARP and WG axioms, but is not a warm glow function. We now turn
 to the general case of observed aspirations.

 4.3 Observed aspirations: the general case

 In this subsection, we eliminate the assumption that aspirations are ordered and work
 out the choice-theoretic foundation of warm glow theory. We provide two results.
 Our first result generalizes Theorem 1 and characterizes the empirical scope of the
 warm glow model with arbitrary (but observed) aspiration functions. Our second result
 determines all inferences that can be made about preferences and tolerances from data.
 As mentioned in Sect. 2, all multiple-self models are prone to identification prob-

 lems. As we show below, if Dee always acts as she aspires then, it is impossible to
 determine whether her choices reflect her preferences or aspirations. However, we
 deliver a closed-form formula that, given any choice and aspiration function, charac-
 terizes all valid inferences about preferences and tolerances in warm glow theory.

 4.3.1 Definition of revealed preferences and tolerance relations

 In this subsection, we formally define revealed preferences, tolerances and intoler-
 ances. A warm glow pair (/?, r) is a preference order R and a tolerance function r
 that satisfies (3). A warm glow pair underlies a choice and aspiration function (C, A)
 if (4) and (5) hold for every issue B e B. Given a choice and aspiration function
 (C, A), let Vc.a be the set of all warm glow pairs that underlie (C, A), and let Tic. a
 be the set of all orders R such that (/?, r) € Vc.a for some tolerance function r.
 The binary relation ^rev captures the revealed preferences implied by the observed

 choice and aspiration functions.

 Definition 4 Given a choice and aspiration function (C, A), let >-rev be the binary
 relation such that for any two alternatives x and y,

 x >rev y x R y foreveryorder R e Tic, a- (9)

 We say x is revealed to be preferred to y if x is R -preferred to y in every warm
 glow pair that underlies the choice and aspiration function. If x is not revealed to be
 preferred to y, then there is a warm glow pair that underlies the observed choice and
 aspiration function such that y Rx. We also define revealed intolerance ( >+y) and
 revealed tolerance (Kev) relations.
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 Revealed preferences and aspirations 5 1 3

 Definition 5 Given a choice and aspiration function (C, A), let be the binary
 relation such that for any two alternatives x and y,

 X y T (x) R y foreverywarmglowpair (/?, r) e Ve. a- (10)

 We say x is revealed to not tolerate y if v is /^-ranked below the tolerance threshold
 for x in every warm glow pair that underlies the choice and aspiration function.

 Definition 6 Let Kev be the binary relation such that for any two alternatives x and
 y>

 x brev y x R= x (y) foreverywarmglowpair (/?, r) e Ve. a- (11)

 We say x is revealed to be tolerated by y if x is equal to or /?- ranked above
 the tolerance threshold for y in every warm glow pair that underlies the choice and
 aspiration function.

 These three revealed relations capture all binary relations (preference, intolerance
 and tolerance) that must hold. An intuitive descriptions of these concepts may help. If
 x is revealed to not tolerate y, then we know that Dee finds x to be "much better" than
 y (i.e., u(x) must exceed u(y) by at least D utiles). So, even if y is an aspiration, Dee
 finds it to costly to chose y in the presence of jc . If jc is revealed preferred to y, then we

 know that Dee finds jc to be better than y (i.e., u(x) must exceed u(y)). If jc is revealed
 to be tolerated by y, then we know that Dee does not find jc to be "much worse" than y

 (i.e., u(x) must exceed u(y) - D). Hence, we have an hierarchy from "much better" to
 "better" to "not much worse" which reflects what we can infer about Dee's preference
 relations and some features of the intensities of her preferences. This can be easily

 seen formally. By definition and (3), jc >rļy y ==» jc ^rev y ==» jc Kev y. Note
 also that and ^rev are necessarily transitive while Kev is not.

 By assumption, preference and tolerance relations persist across issues or when
 new alternatives are introduced. This allows predictions on behavior. As we mentioned
 above, if jc is revealed to not tolerate y, jc y, then y will never be chosen in the
 presence of jc. If jc is revealed to be tolerated by y, jc brev y, and jc is the aspiration
 in some issue B such that y e B , then y will not be chosen in B. Furthermore, if jc is
 revealed to be tolerated by every alternative in B, then jc will be chosen in B.

 4.3.2 Directly revealed preference and tolerance relations

 We now show relations directly revealed from choice. First note that Dee's actual
 choice is tolerated by every other feasible alternative. To see this, observe that if her
 actual choice is not her aspiration, then it must be most preferred and, hence, tolerable.
 On the other hand, if her actual choice is her aspiration, then her aspiration must be
 tolerated. We define the directly observed tolerance relation h as follows:

 x h y <£► jc = y or there is an issue B such that jc, y e B, x = C ( B ) (12)

 When Dee's actual choice differs from her aspiration, she must prefer her actual
 choice to all other alternatives in the issue and find her aspiration intolerable. We recall
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 Table 1 Revealed relations

 implied by three alternatives
 y brev z y xrev z y z

 X t-rev y X hrev z a: xrev z
 X >rev v v ļ_rev . x ^rev z x ^rev z

 X v

 that the directly observed preference relation >d is defined in 6. We also define the
 directly observed intolerance relation >-+ as follows:

 x >-+ y xjzy and there is an issue B s.t. x, yeB, x = C ( B ) , y = A ( B ) (13)

 Lemma 1 Suppose (C, A) is a warnt glow choice and aspiration function, then:
 je h y => x Kev y; x y => x >-rev v; and x >+ v ==>• x >+v y.

 The lemma follows almost immediately from the definitions. If, for example, x
 is directly observed to not tolerate y, then there is an issue B s.t. a, y € £, jc =
 C (B) , y = A ( B ), and for any warm glow pair (/?, r) that underlies (C, A ), it must
 be that x = R(B) and r (jc) R y; otherwise, x cannot be chosen. Lemma 1 shows that
 we can (partially) reveal preferences and tolerances by making direct inferences from
 observed choice and aspirations.
 A simple application of these results is as follows: Consider the example of Riker
 and Ordeshook ( 1 968) discussed in the introduction. Sigelman ( 1 982) found that 1 3 %

 of survey respondents said they voted when they actually abstained while 1 % said they
 abstained when they actually voted. So, assuming that those who said they voted, but
 did not, aspire to vote, we can reveal preferences for 14 % of the respondents. We find

 support for Riker and Ordeshook: 93% (i.e., 13/14) of directly revealed preferences
 are consistent with their assumption that people prefer to abstain over voting. This
 result supports the long-held intuition that voting is largely a product of a sense of
 civic duty.

 4.3.3 indirectly revealed preference and tolerance relations

 We have shown, in the previous subsection, that directly observed relations may reveal
 additional relations indirectly. Table 1 below summarizes the revealed relations that
 must hold between two alternatives jc and z on the basis of their revealed relations

 to a third alternative y. These relations are extremely intuitive. For example, if Dee
 finds jc to be better than y and y to be much better than z, then Dee must find a: to be
 much better than z. This is very easy to prove. If x >^rev y and y z, then x R y
 and r (y) R z. By (3), r (jc) /?= r (y) R z, and, by transitivity of /?, it follows that
 r (a) R z. Thus, a z.4

 Using Table 1 , we can reveal new relations as a consequence of the relations directly
 revealed by Lemma 1 . More generally, we may arrange alternatives into chains in
 which every pair of successive alternatives are connected by a directly revealed rela-
 tion. We can then use the rules in Table 1 to reveal new relations. Revealed tolerance

 4 A complete proof of all relations is given as a part of the proof of Lemma 2 in the "Appendix."
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 Revealed preferences and aspirations 5 1 5

 and intolerance relations imply a revealed preference relation. Similarly, revealed
 preference relations can be combined with revealed tolerance or intolerance relations.
 Depending upon the number of intolerance and tolerance relations the chain includes,
 this process will either imply a new relation between the initial and terminal alternative

 or be indeterminate. Formally,

 Definition 7 A chain (jc, p) is an ordered sequence of alternatives x = (xo, . . . , x„)
 and directly observed relations p = (p'

 , b} and Xj- 1 pi Xj holds for every i = 1 . . . n. Alternative xo (*#,) is the initial
 (terminal) alternative.

 So, a chain is a sequence of alternatives that links the initial and the terminal alter-
 native. Each link in the chain consists of a direct revelation relation such a directly
 revealed preference relation, a directly tolerance relation or a directly revealed intol-
 erance relation. We now define the central property of chains.

 Definition 8 The characteristic xOb p) of the chain (jc, p) is the difference between
 the number of times p¡ = >-+ and the number of times p¡ = h for i = ' .. .n.

 The significance of the characteristic of the chain may not be clear at first. However,
 it captures a straightforward idea. Consider a chain from xo to x„. Each link with a
 >~+ intuitively indicates an utility increase of at least D utiles, whereas each link with

 a I- intuitively indicates that if utility is reduced at all, the reduction is no greater than

 D utiles (and ¡^implies no reduction in utility). So, if we add how many times in
 the chain D utiles were gained and how many times D utiles were not lost, we can
 determine whether xo is much better, better or merely not much worse than x„. The
 remaining subsection delivers a demonstration that this intuitive way of adding and
 subtracting utiles makes formal sense and is observationally meaningful. As pointed
 out, we must start by determining whether the chain has characteristic greater or equal
 to minus 1 , zero or 1 .

 Definition 9 The following relations H , and >-'+ are implied by chains:

 x b' y O x = y or there is a chain (x, p) s.t.x o = jc , x„ = y and x (x, /t>) > - 1 ,

 x y there is a chain (x, p) s.t. xo = x, x„ = v and x(x, p) > 0, and

 x >►'+ y O there is a chain (x, p) s.t. xo = jc, x„ = y and x (x, /t>) > 1 . (14)

 That is, by definition, x >-' y iff x can be linked to y with a chain of character-
 istic greater or equal to 0, * h' y iff x can be linked to y with a chain of charac-
 teristic greater or equal to -1, and jc >'+ y iff jt can be linked to y with a chain of
 characteristic greater or equal to 1 . Our central result in this section (Theorem 2 below)

 equates the observable relations implied by chains I-', >- 1 and >-'+ with all revealed
 tolerance, preference, and intolerance relations brev, >revand ^v. To obtain some
 additional intuition, note that all directly observed relations are also implied by chains.
 For example, if * >cI y, then the chain ((*, y), (>J)) has the characteristic 0 and so,
 x y. The same applies to directly revealed tolerances and intolerances. That is, by
 definition, x b y => x b' y and x y => x >-'+ y. But there are many more
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 relations implied by chains including those that can be inferred indirectly using Table
 1 . In the following lemma, we show that all relations implied by chains are revealed.

 Lemma 2 Suppose (C, A) is a warm glow choice and aspiration function , then:
 X H y=*x Kev y; X y =► je ^rev y; and x y ==» jc yš

 This lemma is based upon the fact that, by Lemma 1 , all directly observed relations

 are revealed relations. The proof shows that the relations implied by chains are relations
 implied by the iterative application of rules in Table 1 .

 In order to obtain even more intuition for the use of chains, recall the simple
 indirectly revealed preference relation ^,nd defined in Sect. 4. 1 . By definition, y >-ind z

 iff there exists an alternative jc such that y h jc z. So, v ^,nd z implies that a
 chain of characteristic zero links y to z. Thus, y >^,nd z ==» y >' z . Intuitively, if y
 is not much worse than jc and jc is much better than z, then y is better than z (because

 much better means gaining D utiles and not much worse means not loosing D utiles).
 Besides the fact that all relations implied by chains are revealed, Lemma 2 also

 tells us that if (C, A) is a warm glow function, then the preference relations implied
 by chains, >►', must be irreflexive. This follows immediately from the lemma and the
 fact that the preference relation R in any warm glow pair (/?, r) underlying (C, A) is
 irreflexive. In the following theorem, we characterize warm glow theory with observed

 aspirations. We show that (C, A) is a warm glow function if and only if the preference
 relation implied by chains >' is irreflexive. We also show that all revealed relations
 are implied by chains. That is, the deeper part of the theorem tells us that everything
 we can learn about the agent's motivations (preferences and tolerances) on the basis
 of data is obtained through chains. Because chains are defined in terms of directly
 observed relations, the theorem provides a simple and direct way to infer motivations
 and predict behavior.

 Theorem 2 (C, A) is a warm glow function if and only if there is no x such that
 x >' x. If(C, A) is a warm glow function then

 x brev y jc h'" y,

 x >rev y O x >' y and

 x y o jc y.

 We argued above that (C, A) is a warm glow function only if preferences implied
 by chains are irreflexive. In the first part of the theorem, we show that this condition
 is also sufficient. We also show that all revealed preference relations are implied by
 chains. The proof is by construction (see Lemma 3 in the "Appendix"). Suppose that
 >•' is irreflexive, and no preference relation between jc and y is implied. We show that
 it is possible to construct warm glow pairs (/?, r) and (/?', r') underlying (C, A) such
 that jc R y and y R' jc. We take all preferences implied by chains and add a single new
 relation, for example jc R y. The addition of the new relation generates a new set of
 chains implying additional relations. We show that the resulting preference relations
 are still irreflexive, and the process can be repeated until a complete preference order
 has been defined. We then demonstrate that we can pair this complete order with a
 tolerance function r such that (/?, r) is a warm glow pair underlying (C, A).
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 Revealed preferences and aspirations 5 1 7

 In the second part of the proof, we show that the only tolerance and intolerance rela-

 tions that can be revealed are those that are implied by chains. Suppose, for example,

 that for a given warm glow function (C, A ), x is revealed not to tolerate y ( x >-+v y).
 Then, for every warm glow pair (/?, r) underlying (C, A) it is the case that x(x) R y.
 We show that there is a warm glow pair (/?, r) underlying (C, A) with a set of some
 technical properties. We use these properties in the main part of the proof to show that
 there must be an issue B for which an intolerance relation between C(B) and A(B)
 is directly observed and jc >l C(B ), A(B) >' y. We then construct a chain (x, p)
 with initial alternative jc and terminal alternative y such that x (x, p) > 0. That is, any
 revealed intolerance relation must be implied by chains. Using a similar procedure,
 we show the same is true for tolerance relations.

 The main theorem also implies that if there are no issues such that aspiration and
 choice are different, that is, C (B) = A(B) for every issue B , then (C, A) is a warm
 glow function, and there are no revealed preference (or intolerance) relations. This is
 stated formally in the following corollary.

 Corollary 1 For any choice and aspiration function (C, A) such that C = A,

 (a) (C, A) is a warm glow function;
 (b) Vc.a contains all orders , that is, for every order R on X, there exists a tolerance

 function x s.t. (/?, r) e 7 Zc.a'-*
 (c) the sets of revealed preference and intolerance relations are both empty .

 The proof is simple. If A=C , then there are no directly observed preference or
 intolerance relations. Any indirectly revealed relation would require a chain with at
 least three alternatives and characteristic greater or equal to - 1 . No such chains exist.

 So, even if aspirations are observed, we may not reveal preferences and tolerances
 (even if the choices violate WARP). There must be at least one instance in which
 the agent is observed to aspire to one thing and choose another. On the other hand,
 even a single observation of intolerance can reveal a great deal of information about
 preferences and allow a variety of predictions. In some examples, a single issue in
 which Dee does not act as she aspires implies a complete revelation of her preference
 and tolerance relations (see Example 1 in the "Appendix").

 So far, we have considered a model in which Dee's aspirations are observed. In the
 next section, we consider the case in which it is legitimate to make assumptions about
 Dee's aspirations in some issues but not in others.

 4.4 Partially observed aspirations

 Let an observed aspiration function be a function A : B - > X, B ç ß, such that
 A (B) e B for every B e B. We say the aspiration function A extends Ã if A(B) =
 Ã(B) for every issue B e B.

 Definition 10 (C, A) is a warm glow (choice and observed aspiration) function if
 there exists an aspiration function A such that A extends Ã and (C, A) is a warm glow
 function.

 * Just take r U) = a s.t. zR=a for all z e X.
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 Now we define revealed preferences and tolerance relations for the case with par-

 tially known aspirations. Let Ac ¿ be a set of all aspiration functions A such that

 A extends Ã and (C, A) is a warm glow function. Then, we may define revealed
 preference and tolerance relations for (C, A) as follows:

 X >-rev y by (C, Ã) iff x xrev y by (C, A) for every A e Ac

 X y by (C, Ã) iff x >-+v y by (C, A) for every A e Ac and

 x hrev y by (C, A) iff jc hrev y by (C, A) for every A e Ac

 In other words, jc is revealed to be preferred to y if and only if it is revealed to be
 preferred for any possible extension of the observed aspirations.

 Definition 11 For a given observed aspiration function A and choice function C let
 A * be an aspiration function that extends Ã and A*(B) = C(B) for all those issues
 such that an aspiration is not observed.

 The following proposition shows that whenever aspirations are unknown and not
 necessarily ordered we may assume without loss of generality that they are identical
 to the actual choice.

 Proposition 1 (C, A) is a warm glow function if and only if (C , A*) is a warm glow
 function. Moreover, the revealed preference and tolerance relations for (C, A) and
 (C. A*) are the same , that is,

 x ^rev yby(C , Â) iff x ^rev yby(C , A*),

 x yby(C . Â)iff x yby(C , A *), and
 x hrev y by (C, À)iff x brev y by (C, A*).

 The result follows directly from Theorem 2. We first show that if the preferences
 revealed by the extension ^4* are not irreflexive, then the preferences revealed by any

 other extension A e Ac ¿ are not irreflexive either and (C, A) cannot be a warm
 glow function. The particular extension A* assumes that every unobserved aspiration
 is the same as observed choice. Thus, A * implies no additional directly observed
 intolerance or preference relations beyond those directly observed in A. Intuitively,
 we get a minimum number of new relations implied by chains. Therefore, if the
 preferences revealed by A* are reflexive, then preferences generated by any extension

 in Ac ã are as well. In addition, since relations revealed for (C, Ã) must hold for any
 extension including A*, it follows that these are the only relations that are revealed.

 The key implication of the proposition is that if we make an incorrect assumption
 that Dee's aspiration in an issue B is, say, alternative x (her actual aspiration is y) and
 her choice is also jc, then we will not make incorrect inferences about her preferences

 and tolerances, and all our predictions about her behavior are still valid. However, if we
 make an incorrect assumption that Dee's aspiration in an issue B is x and her choice is

 c, then we will make some incorrect inferences about her motivations and we also

 make incorrect predictions about her behavior. This emphasizes the fact that observed
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 Revealed preferences and aspirations 5 1 9

 aspirations are important only when they differ from choice. In particular, the case
 where Dee has no aspirations in some, but not all, issues can be accommodated by our
 simpler model.
 We can now formally state an important result. Warm glow theory has no empirical

 content when aspirations are unknown and unordered.

 Corollary 2 For any choice function C, there is an aspiration function A such that
 (C, A) is a warm glow function.

 The proof follows immediately from Proposition 1 and Theorem 2. Proposition 1
 tells us that if no aspirations are observed, then there is a function (C, A) that is a
 warm glow function if and only if (C, A=C) is a warm glow function. From Theorem
 2, it follows that no preferences are revealed for the function (C, A=C) and, since no
 alternative is revealed to be preferred to itself, it is a warm glow function.

 5 Unobserved and ordered aspirations

 In Sect. 4, we show that warm glow theory has no empirical content when aspirations
 are unobserved and not necessarily ordered. In this section, we show that if aspira-
 tions are unknown but ordered, then warm glow model has empirical content. A full
 characterization of empirical content of warm glow theory in this case is still an open
 question.

 When aspirations are ordered, an alternative jc may be chosen in the union of a set
 of issues containing x only if it is chosen in at least one of the issues. We call this
 property the negative expansion axiom.

 Negative expansion axiom: If for every i e 1,a? it is the case that jc e B¡ , x ^
 C (B¡) then jc / C (U/ Bj)Ě6

 To see that the negative expansion axiom (NE) must hold under warm glow theory
 with ordered aspirations, observe that x can be chosen in the union of a set of issues
 containing it only if it is either the most preferred choice or the aspiration. If jc is the

 aspiration (i.e., x = A (U /£/)), then, under the assumption of ordered aspirations,
 jc = A (Bj) for every i. Moreover, jc must be tolerable by every other alternative
 in UjBj, and, therefore, jc must be chosen in every issue B¡. On the other hand, if
 x ^ A (U ¡Bj), then jc must be the most preferred alternative (i.e., R (U ¡B¡)) and jc
 must not tolerate A (U ¡B¡). Since A (U ¡B¡) is also the aspiration choice for every B¡
 that contains it, jc must be chosen in every B, that contains A (U/ B¡).

 The NE axiom demonstrates that warm glow theory has empirical content when
 aspirations are unknown but ordered. Suppose Dee makes a small donation s in {ai, s }
 but chooses not to donate n in {aí, 5, /}. Since {aí, s, /} = {aî, s] U {aí, /} , n e {aí, s] H
 {ai, /} and ai is chosen in {aí, s, 1} but not in {ai, s] ,, the NE axiom implies that n must
 be chosen in {aí, /}. We can also infer motivations. Dee's choice of n in {aí, s, /} must
 be motivated by her preference (if n is her aspiration in {aî, s, /}, then she must choose

 The expansion axiom (see Manzini and Mariotti 2007) requires that if for every / e 1 . n it is the case that
 x e Bj. x = C (Bj), then .v = C (U ¡Bj).
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 n in {n, 5-} as well). Therefore, her choice of s in {n,s} must be motivated by her
 aspiration.

 In some situations, it is possible to predict behavior even when it is not possible
 to infer motivations. For example, if we observe that y is chosen in {jc, y} and z is
 chosen in {jc, z}, we cannot tell whether these choices are motivated by preferences or
 aspirations. However, NEA implies that jc cannot be chosen in {jc, y, z}.

 6 Extensions

 The main purpose of this paper is to provide choice-theoretic foundations for warm
 glow theory. The need for choice-theoretic foundations can be easily seen by the fact
 that even simple warm glow models can accommodate violations of WARP (e.g.,
 the contribution to public goods example mentioned in the introduction). The ability
 of warm glow theory to accommodate behavioral anomalies comes from the fact that
 aspirations are issue dependent. This shows that standard choice-theoretic foundations
 do not apply to warm glow models. However, the traditional motivation for warm glow

 theory in applied work was not to accommodate violations of WARP. For example, the
 motivation of Riker and Ordeshook for introducing warm glow is that, without it, we
 would draw the unreasonable inference that people prefer voting to abstention even
 though the only real difference between the two alternatives is that voting is costly
 (in addition, in standard economics, agents would only vote if their utility for voting
 were arbitrarily large to compensate for vanishing pivot probabilities).

 The difficulties in applying standard theory of choice to political science can also
 seen in the following example. Suppose that given the issue {a, A} Dee's hypothetical
 choice is A (i.e., Dee is merely asked in a survey whether she would choose a or h
 and her answer is A), but her actual choice between a and A is a. If we apply standard
 theory, we infer a preference for a over A because standard theory disregards hypo-
 thetical choice as relevant for inferences over preferences. Now, if expected utility
 theory applies and Dee is given the choice between two lotteries La = (pa,( 1 - p)z)
 and Lh = (pA, ( 1 - p)z) such that p e ( 0,1 ), Dee must choose La. However, if the
 probability p is small, the choice between La and Lh becomes a near-hypothetical
 choice between a and h because z is implemented with high probability in both lot-
 teries. In the context of a voting experiment, Feddersen et al. (2009) show that Dee
 may choose LA, when A is morally appealing and a is monetarily appealing for Dee
 (see also Shayo and Harel 2012). This behavior is not a violation of WARP, but it
 violates expected utility theory and several related models of choice ordinarily used
 in economics and political science. This provides prima facie evidence that standard
 theory is not applicable when hypothetical and actual choice differs.

 If lottery La is interpreted as "voting for a" and lottery Lh is interpreted as "voting
 for A" and z is the event where Dee's vote is not pivotal, then the question is why
 does Dee vote for the alternative she prefers the least (and why does, in a hypotheti-
 cal situation, Dee select A over a). Warm glow theory provides a simple, logical and
 therefore compelling interpretation. Dee indeed prefers a over A because a is instru-
 mental^ beneficial. However, we assume that she aspires to choose A (or LA in the
 case of lotteries) because these choices are commonly perceived to be ethical. As the
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 probability p decreases, the chances that her choice is consequential decreases, and at
 some point, she can tolerate her aspiration and, hence, chooses it. Our simple model
 of warm glow can only accommodate lotteries if probabilities are restricted to take
 finitely many values. This is often analytically inconvenient and so extending warm
 glow theory to accommodate lotteries may be a valuable exercise (see Shayo and Harel
 2012 for results in this direction).

 7 Conclusion

 In warm glow theory, an agent may prefer one alternative but aspire to choose another.
 She chooses her aspiration only if she can tolerate choosing it instead of her preferred
 choice. We provide choice-theoretic foundation for warm glow theory and a charac-
 terization of how to infer motivations. Our findings show that ad hoc assumptions used
 in the warm glow literature can be tested. In addition, warm glow theory generates
 predictions on behavior even when motivations cannot be inferred and standard theory
 does not apply.

 Warm glow theory may be appropriate in settings where aspirations and actual
 choice may differ. This setting may be problematic for standard theory, but it is pre-
 cisely the choices that differ from aspirations that deliver the critical data required to
 estimate the core elements of warm glow models.

 8 Appendix

 8.1 Examples

 Our first example shows that a single issue where Dee does not act as she aspires can
 deliver a complete revelation of her preference and tolerance relations.

 Example 1 There are three alternatives, a, y and z. Assume that C(a, v) =
 a A( a, y) = y; A( a, z) = C( a, z) = z' A(y, z) = C(y, z) = y.

 In this example, except for the binary choice between a and y, Dee acts as she
 aspires. Yet, her preference order is completely revealed from pairs of directly observed
 relations: z x >+ y '- z, and she must prefer a to z to y. It also follows that
 t(a) = z, t(z) = y and r(y) = y.

 Our second example shows observed choices and nonordered aspirations that vio-
 late the warm glow model of Definition 2 without violating the LWARP and the WG
 axiom.

 Example 2 There are four different alternatives a, y, z and w. Assume that C (a, y, w)
 = a A{ a, y, w) = w' C( a, y, z) = y A( a, y, z) = z' and for all other issues, both
 aspirations and actual choices are resolved by order Ř such that x Ř y Ř z Ř w.

 Note that {a, y, io) e ß,v and {a, y, z} € B' and all other issues do not belong to 13s.
 LWARP is satisfied: There is no pair of nested issues in Bs . WG is also satisfied because

 there is no issue B such that A(B) = tv or w >cl A(B) (apart from {a, y, w] e Bs)
 and the only issue B such that A(B) = z or z A(B) (apart from {a, y, z] e Bs)
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 is {z, w}. However, C(jc, v, z) = v £ { z , w}. At the same time, {jc, y , w] e Bs and
 C(jc, w) = X implies that x >d y, while {jc, y , z} € Bs and C(jc, y, z) = y implies
 that y >d x.

 8.2 Proof of the preliminary result

 We show that Definition 1 of warm glow function is equivalent to Definition 2.
 Let (C, A) be a warm glow choice and aspiration function. Let utility function u

 and scalar D > 0 be such that property (2) of Definition 1 holds. Let R be a preference
 order associated with u. For any given alternative a e X, let z (a) e X be the lowest
 /?-ranked alternative such that u(a) - D < u(z(a)). So, u(a) - D > u(b) for any
 alternative b e X such that u(b) < u(z(a)). We show that property (3) holds for
 (/?, r), and (/?, r) underlies (C, A) , that is, properties (4) and (5) of Definition 2
 hold.

 u(a) > u(z(a)) because u(a) - D < u(a). In addition, if u(a') > w(a), then
 u(z(a')) > u (a') - D > u(a) - D, and, therefore, u (r (a')) > u (r (a)). Hence,
 (3) holds. Suppose for some issue B , C ( B ) = A ( B ). Then, by (2), Ua b(C(B)) =
 u(A(B)) + D > Ua b(R(B)) > u(R(B )), and, therefore, A (B) R= r (/?(/?)).
 Now suppose that C(B) ^ A(B). Then, C(B) = R(B) because otherwise, by the
 definition of R(B ), Ua b(C(B)) = u(C(B)) < u(R(B)) < Ua b(R(B)) contra-
 dicting (2). Hence, by (2), u(C(B)) = u ( R(B )) > u(A(B)) 4- D, and, therefore,
 r (/? (B)) R A ( B ). So, (4) and (5) hold.

 Now, let (C, A) be a choice and aspiration function that satisfies (4) and (5) for
 some preference order R and tolerance function r that satisfies (3). Let D = 1 . We
 now show that there exists a utility function u such that (2) holds, and, in addition, u
 is associated with preference /?, and for all a e X : u (a) < u (r (a)) + 1. The proof
 is by induction on the size of X.

 Assume that X has only two alternatives, that is, 'X' = 2. So, let X = [x, y} , x /
 y, andjt == R (X), that is, jc R y. We define u (y) = 0,and u(x) = 0.5 if r(x) - y and
 u(x) = 2 if r(jc) = jc. By definition, u is associated with R and u(a) < u(r{a)) + 1
 for a e X (note that, by (3), r(y) = y). In addition, (2) holds because, if A (X) =
 x = R (X) , then C (X) = jc, and UA X (jc) = u (x) + 1 > 0 = u (y) = UA X (y). If
 A (X) = y R (X) = jc, then C (X) = jc if r (x) = x , and UA X (jc) = u(x) = 2 >
 1 = u (y) -|- 1 = UA X (y), and C (X) = y if r (jc) = y, and UA-X (jc) = «(*) =
 0.5 < 1 =ii(y)+ 1 = UA X (y).

 The induction assumption is that whenever |X| = n, there exists a utility function
 u associated with R such that u(a) < u(r(a)) + 1 for all a e X and (2) holds. Now
 assume that 'X' = n + 1 . Let ã e X be the highest /?-ranked alternative. So, a R a for
 every a ^ ã. Let a e X be the second highest /?-ranked alternative. So, a Ra for every
 a $ {¿, a}. Let X be X'{ā). |X| = n and, by the induction assumption, there exists a
 utility function ū : X - ► associated with R on X such that ū(a) < ū(z(a)) + 1
 for all a e X and (2) holds for any issue B ç X. If z(ä) is not /?-ranked lowest, then
 let à e X be the highest R- ranked option such that z(ã) Rã.

 Let u : X - ► M be such that u(a) = u(a) for any a e X, and u(ã) e
 (max{ň(a), u (¿) -h 1), u(z(ã)) -h 1) if z(ã) / ã and z(ã) is not R~ ranked low-
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 est, u(a) > w(a) + 1 if x(ã) = a , and u(ã) e («(a), ū(x(ā)) 4- 1) if x(ā) is /^-ranked
 lowest.

 We first show that u is well defined. If x(ā) ^ ā then, by (3), x(ã) R= r(a), and,
 by induction assumption, «(a) < w(r(a)) 4- 1 < ū(x(ā)) 4- 1. In addition, if r ( a )
 is not /?-ranked lowest, then, by definition, x(ã) Rã , and, by induction assumption,

 ü (( ã ) < u(x(ā)). Hence, u is well defined.
 By definition, u{ã) < u(x(ã)) 4- 1 and u(ã) > «(a). So, by induction assumption,

 u (a) < u(x(a)) -1- 1 for all a e X and u is associated with R.
 We now show that (2) holds. Let B be an issue such that ã e B. So, by definition,

 R(B) = ā. Assume that A(B) R= x(ã). Then, by (4), C(B) = A{B). It follows
 that Ua b(C(B)) = u(C(B)) 4- 1 > u(x(ã)) -h 1 > u(ã) > u(x) = UA%B(x) for
 every x e B, x C(B). Now assume that r(ā) R A(B). Then, by (5), C(B) =
 R(B) = ã R A (B) (and x(ä) is not /?-ranked lowest). If x(ā) ã , then Ua b(C(B))
 = u(ã) > u (¿) + 1 > u(A(B)) 4- 1 = Ua b(A(B)). In addition, Ua b(C(B)) =
 u(ā) > u (je) = UA B(x) for all a: g B, x £ {A(B), C (B)}. If r(ã) = ā, then
 Uab(C(B)) = u(ā) > ū(ū) -hl > u (je) 4- 1 > UAB(x) for ail x j=. ā. □

 8.3 Proof of Lemma 1

 Let (C, A) be a warm glow choice and aspiration function, and suppose for x and y,
 there exists issue B such that x , y e B, x = C ( B ), that is, x b y. If x ^ y and
 x ^ A ( B ), then x y, and if, in addition, y = A ( B ), then x y. Let (/?, r)
 be any warm glow pair that underlies (C, A). In what follows, we use transitivity
 of R and properties (3) of warm glow pair (/?, r). Since (/?, r) underlies (C, A)
 either x = R ( B ) , r (jc) /? A (£) or jc = A (B) R= r (R (B)) must hold. If x =
 A (B) R= x (R ( B )), then R (B) R= y implies r (R (B)) R= x (y), and x R= x (y)
 must hold. If x ^ A (B), then x = R ( B ) R= y R= x (y). In either case, x /?= r (y)
 holds, and since (/?, r) was chosen arbitrarily, x brev y. Now, if x y and jc ^ A ( B )
 then x = R ( B ) R y and jc ^rev y. If, in addition, y = A ( B ), then r (jc) R y and
 jc y. □

 8.4 Proof of Lemma 2

 Let (/?, r) be any warm glow pair underlying (C, A).
 Step 1. We, first, prove that a b implies a ^rev b. For a given integer k , we

 define binary relations >-k as follows:

 - if k = 0, let x y iff jc R y;
 -if k > 0, let x >k y iff there exists a sequence of alternatives jc = jco, JCi,...,

 Xk- 1 , Xk = y such that for all / = 1 , k : x (x¡ _ i ) R x¡ ;

 -if k <0, let x >k y iff there exists a sequence of alternatives jc = jco, JCi,...,
 X-k- l , X-k = y such that forali j = 1, -k : jc7_i R= x (jc,).

 We show now that jc >m y z implies jc >"l+" z.

 (1) x y >k z implies x >k z. If k = 0, then, by transitivity of /?, jc R y R z
 implies x R z. If k > 0, then, by (3 ), x R y implies r (jc) R= x (y), and
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 x (jc) R= r ( y) R y ' implies x (x) R y' . If k < 0, then x R y R= x (y') implies
 * /?= x(y').

 (2) x >k y z implies jc >k z.lfk > 0,thenr (jc*_i) R y R z implies r (jc*_ i ) Rz.
 If k < 0, then, by (3), y Rz implies r (y) R= x (z), and jc_*_i /?= x (y) /?= r ( z )
 implies x-k-' R= x (z).

 (3) jc >m y >n z, m • n > 0, implies jc z. The types of both sequences are the
 same, and the combined sequence implies jc >-m+n z.

 (4) jc y >~l z implies jc z. r (jc) R y R=x (z) implies r (jc) R x (z), and,
 therefore, by (3), jc R z.

 (5) jc y z implies x z. x R= x (y) R z implies x R z.
 (6) jc >m y >n z, m • n < 0, 'm' > 1 or 'n' > 1, implies jc z. Note,

 that relation >k , k ^ 0, is equivalent to a sequence of 'k' relations ^s,^kK
 Therefore, using 4), 5), and 1 ), 2), we eliminate terms of both sequences until we
 get a sequence with all binary relations of the same type. For example, jc >~2
 y z implies jc x' v"1 y y' V2 >-2 z, implies, by 5),
 jc ^_l jci y i v'2 >2 z, implies, by 1), x x' y2 >2 z,
 implies jc y2 >2 z, and, hence, by 1), jc z.

 Let (x, p) be a chain such that xo = a, x„ = b and x ((x, P )) > 0. By Lemma 1, if
 jc y, then r (jc) R y, and, therefore, jc >- 1 y. Similarly, if jc y then x y, and
 if jc h y then jc ^_1 y. Hence, for a pair of successive alternatives x/_i p/ x, of the
 chain x, x,_i >^x ((*/- 1 )• Cp# )) X/. Moreover, x (x, ¿>) = £?=i X ((x,- i , x,), (p,)).
 Therefore, xo >~x«*<>.xiM/>i)) xi ... ^x((^n-'^n).(pn)) Xn implies xo xn. If
 X ((x, p)) > 0 then either x ((x, p)) = 0, and, by definition of >~°, xo R x„, or
 X ((x, p)) > 0, and, by definition of >k and (3), xq R=x (xo) Rx' R=x (xi) R
 . . . x„_ i R= x (xn- 1 ) Rxn implying xo R xn . In either case, a Rb holds.

 Step 2. We now show that a >-'+ b implies a >-+v b. There exists a chain (x, p)
 such that xq = a, xn = b, x (x) > 0. Let x(*' k = 1, n, be the chain (x(*' p^) =
 ((xo, . . . , xic) , (pi, . . . , p*))> and, for convenience, let (x(0),p(0)) = (xo,0),
 X (x(0' p(0)) = 0. Then, for every k = 1, n, |x (x(*' p^k)) - x (x(*-1), p(*_l)) | <
 1. Since x (x(0),p(0)) = 0, x (x(,,' p(/i)) > 0, there exists K e ',n such that
 X (x(*' p^K)) = 1, x (x(*-I), p(*_I)) = 0. Let u = x^_i and u = x^. It follows
 that u >^+ u, and, by Lemma 1, x (u) R v. If K = 1, then u = a. If K > 1, then
 (x(a:-1) p(K- 1)^ is a chain with zero characteristic connecting a and m, that is, a >-' w,
 and, by Step 1 , a R u. In either case a R= u holds. Similarly, if K = n, then v = b,
 and if AT < n, then (( x*

 characteristic, that is, v b , and, by Step 1 , v R b. In either case v R= b. Now, by (3)
 and transitivity of /?, a R= u, x (u) R v , and v R= b imply r (a) R b . Since (/?, r)
 was chosen arbitrary, a b.

 In a similar way, we can prove that a H b implies a hrev b. Indeed, if a = b,
 then, by (3), a R=x (a) holds for every (/?, r) € Vc.A ' otherwise, there exists a chain
 (x, p) such that xo = a, xn = b , and x (x, p) > - 1. If x (*• P) ^ 0, then a >' b ,
 and, by Step 1,0 /? ^. Therefore, by (3), a R x (b). If x (x, p) = - 1, then we define
 (x(*' p{k) ), k = 0, n, as before, and let 6 1, n be such that x (x(/r), p(/r)) =
 -1, X (x(*~l' p(/r_,)) = 0. For u and u defined as before, a R= w, u h u, and
 v /?= by Lemma 1 and (3), imply a R= x (b). □
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 8.5 Proof of Theorem 2

 Definition 12 Let (C, A) be a choice and aspiration function, and >-* be a binary rela-
 tion on X such that extends . An extended chain (^*-chain) (jc, p) is an ordered
 sequence of alternatives x = (xo, . . . , x„) and binary relations p = (pi , . . . , pn) with
 n > 1 such that p/ e {^+, >-*, h} and jc,_i p, x¡ holds for every i = 1 ... n. A char-
 acteristic of the extended chain x (x, P) is the number of times p/ =>-+, / = 1 . . . n,

 minus the number of times p, =K j = 1 ... n . 7

 Definition 13 Let (C, A) be a choice and aspiration function, and be a binary
 relation on X such that extends >d . We define binary relation R*~* as follows:
 x y if and only if there exists an extended chain (x, p) such that jco = x , xn = y,
 and x (x, p) > 0.

 Lemma 3 Let (C, A) be a choice and aspiration function, and bea binary relation
 on X such that extends If R^ is i r reflexiv , then (C, A) is a warm glow
 function, and there exists a warm glow pair (/?, r) underlying (C, A) such that for
 every pair of alternatives x and y, x R^ y implies x R y.

 The proof is as follows. We first construct an order R that extends the binary relation
 R* . We then show that R can be paired with some tolerance function r such that
 (/?, r) is a warm glow pair underlying (C, A).

 We construct R by induction. Let k = 0 and let By assumption, R>{) is
 irreflexive. If R>{) is complete, then let R = R>{). Otherwise, we construct a series
 of binary relations {>ki such that for every k > 0, extends >k-' and R>k is
 irreflexive.

 So, assume that for a given k , R>k is irreflexive and not complete. There exist two
 alternatives a and b such that a ^ b, and neither a R>k b nor b R>k a holds. Let >k+'
 be a binary relation such that jc y if and only if jc >k v or jc = b, y = a. Note
 that >k+' extends and, by definition, R>k+ 1 extends R>k (to see this, note that
 every ^¿-chain is a >k+' -chain).

 Suppose now that R>k+] is not irreflexive: There exists an alternative jc such that
 x R>k+i x. Therefore, there exists ^¿+i-chain (x, p) such that xo = x„ = jc and
 X (x, p) > 0. If (x, p) does not contain new relation b >k+' a then (x, p) is ^¿-chain
 and x R>k x. This contradicts the assumption that R>k is irreflexive. Let M = {i e
 1 . . . n s.t. X/-1 = b , X/ = a , p, =>k+' }• M is not empty, and suppose M consists of
 the following indexes: M = {/ 1

 7 We may use / (x) instead of x (x, P) whenever it is clear what relations between x's are assumed.

 8 Note, that, by definition, every chain is an extended chain. Therefore, R extends . Moreover, if
 >-*=>- then R*~* = R* =>¡ .
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 X(x) = x(xo=x

 +X (x/2 - i » x/2) + X (x/2 = a

 = x (x/W(=ü

 -fX (x/2_i,x/2) + x (x/2=fl

 = X (x/w = Ci

 +0 + X (x/2 = a

 There exists at least one nonnegative term in the sum; hence, there exists a >-¿-chain
 with nonnegative characteristic such that x,,_ , = a and '¡t = b (io = im if t = 1 ). This
 implies that a R>k b , and this contradicts the assumption that a R>k b does not hold.
 We increase k by one and continue extending relations [>ki until R>k is complete.

 Since X is finite and R>k+* strictly extends R>k , this process is finite. When R>k is
 complete we define binary relation R to be equal to R>k. Note that R is irreflexive,
 and extends >-*, implying that R extends R^* .

 (a) We show that R is an order. Constructed R is transitive. Indeed, if x R y and
 y R z then x R>k y and y R>k z, and there exist two extended >-*-chains with
 nonnegative characteristics connecting x to y and y to z. The combined chain
 has nonnegative characteristic and connects x to z- Therefore, x R>k z implying
 x R z. Now, R is irreflexive, complete and transitive. Therefore, R is a (complete)
 order.

 (b) We define r as follows. For every alternative jc, let

 L (jc) = {y s.t. there exist alternatives u and v s.t. x R= u, v R= y, and u >+ u} .

 L (x) is a set of all alternatives that must be intolerable by x given R and directly
 observable intolerances. By definition, if y e L (x) and y R= z for some alter-
 native z, then z € L (x). Therefore, if z £ L (x) and y R= z then y £ L (x).
 Also, note that x £ L (jc), and hence X'L (jc) is not empty. Therefore, we define
 r (jc) as /?-minimal element of X'L (jc). If z £ L (x) then z R= r (*), and if
 y e L(x) then r (jc) R y (otherwise y R=r (jc) and r (x) £ L (x) hold implying
 y i L (x)).

 (c) We show that (3) holds for R and r, and, therefore, it is a warm glow pair. For
 every alternative jc, x £ L (x), and, therefore, x /?= r (x). Suppose x R y. If
 r (x) e L (y), then there exist two alternatives u and v such that x R y R= u >+
 u /?= r (X). By transitivity of /?, this implies r (x) e L(x) contradicting the
 definition of r (x). Therefore, r (x) £ L (y) and r (x) /?= r (y).

 (d) (/?, r) underlies (C, A). Let B be an issue, B e #, and C ( B ) = x. We want
 to show that x must be selected by (/?, r). If x ^ A (B) = y, then x >+ y,
 and for every z e B' {x} : x z. x >d z is a chain with zero characteristic,
 therefore, x R z, and, since this holds for every z e B' {x} , x = R (B). Now,
 by definition, y = A (B) e L (x) (u = x, v = y). Hence, r (x) R y and (/?, r)
 selects x. Suppose now that x = A (B).lf R (B) = x, then x is selected by (/?, r).
 If w = R (B) jz x = C (£), then, by definition, x h w. Suppose x e L (w).
 There exist two alternatives u and v such that w R= a, v /?= x and u >~+ v. If
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 w R u then let (x, p) be a ^¿-chain such that x = ( w , . . . , u) and x (x, P) > 0.
 If w = u then let (x, p) be ( w , 0) and let x(x, p) = 0.9 If v R x then let
 (y, p') be a >*-chain such that y = (v, . . . , jc) and x(y. p') > 0. If v = x then
 let (y, p') = (jc, 0) and let x(y< p') = 0. The characteristic of the combined >~k
 chain x (x, (u u) , y, (x h w)) = x (x) + x (" >^+ u) + X (O + X U I" w) >
 X (w v) + x (x w) = 1 - 1=0. Thus, w R>k w. This contradicts the
 irreflexivity of R>k . Therefore, jc £ L (w) , x R= x ( w ), and (/?, r) selects

 We have shown that if R^* is irreflexive, then there exists a warm glow pair (/?, r)

 underlying (C, A) such that R extends R** . Therefore, (C, j4) is a warm glow function
 and for every pair of alternatives jc and y, jc R y implies x R y. □

 Lemma 4 Le/ (C, A) be a choice and aspiration function and suppose >l is irreflexive .
 For /wo alternatives jco and yo, /e/ Z be a set of alternatives such that jco, yo $
 and for every y e Z, jco >-' y does not hold (Z can be empty ), one/ /e/ W be a set of
 alternatives such that jco, yo ^ W, and for every x e W, x >l yo e/oe5 no/ /io/e/ f W
 con /?c empty).
 (a) If jco >-' yo does not hold , and for every x e W, y e Z , x y does not

 hold , //zen z/iere exists a warm glow pair (/?, r) underlying (C, j4) such that
 yo /? jco, yo * * /<?>" every jc e IV, one/ y /? jco /or eveo7 y € Z. 10

 (b) If: co yo holds, but xo >'+ yo does not hold, and for every x e W, y e Z, x
 y does not hold, then there exists a warm glow pair(R , r) underlying (C, A) such
 that y Rxo R yo Rx for every x e W, y e Z.

 We define binary relation as follows: jc y if and only if jc y or jc €
 Z, y = jco or jc = yo, y e W or, for a) only, jc = yo and y = jco, and show that R**
 is irreflexive.

 Suppose it is not. Then, there exists ^*-chain (x, p) such that xo = xiV = z
 and x (x, p) > 0. Let >new be a binary relation such that jc >~neim' y if and
 only if jc y holds, but jc y does not hold. Suppose that for every pair
 of successive alternatives x*_i and x¿, Xk~' >,lew Xk does not hold. In this case,
 if x*~i >-* x¿, then x*_i x¿, and if not x*-i x¿, then Xk~' p¿x¿,
 where pk € {^, >^+, h}. Thus, (x, p) is a chain with nonnegative characteristic,
 and z >l z, which contradicts the irreflexivity of . Therefore, set of indexes
 K = [k = 1,5 s.t. Xk-' >new Xk } is not empty. Let K = {k' k' <
 ... < kt, xf = (x*,, ... z, ... ,x*,_ ',xki

 (p*,+i, ... p.v,pi, ... , p*,) (ko = kt). (x', p') is >*-chain, and x(x',p') =
 X (x, p) > 0. Now, for every / e 1, /, x ((x*,_i , x*,), (p*,)) = 0, and x*,_,
 P*,_ i + i • • • Pk,- 1 *k,-' is a chain connecting jco or some element in W and yo or
 some element in Z.

 X (x) = x(x^, .. . ,xit1_i) + x(x^1-i,x^1)-f. . - + x(x*,_,

 = X(xkt,. . . , x*,_i) + 0 4- • • - + X(x*,_

 9 Strictly speaking, (x, p) = (w. 0) is not an extended chain, but we define it this way for convenience.

 10 In a special case, when W and Z are empty, if >' is irreflexive, and .v >' y does not hold for some
 pair for alternatives .v ^ y, then (C. /4) is a warm glow function and there exists (/?, r ) e Ve. a such that
 yRx.
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 (a) Let L = {/ e L t s.t. x*,_, € W and x*,_i e Z }. If / e L, then
 X (x*/_i » • • • » x*/-i) £ 0, and = yo, x*, = jco- Therefore, there exists
 at least one / £ L, and the sum of characteristics of chains (x*,_, , . . . , x*7_i) for

 all / ^ L is nonnegative. Therefore, there exists chain (x*7_, , . . . , x*,_i) such that
 / i L, and x (**,_ ,

 Therefore, jco yo, or jco >' y for some y e Z, or x yo for some x e W.
 This contradicts the assumption. Therefore, R*~* is irreflexive.

 (b) Let L = {/ e 1 , ř s.t. x*,_, = jco and x*,-i = yo}. If / € L, then
 X (x^_, , . . . , x*,_i) < 0, and x^_,-i e Z, xkļ e W. Therefore, there exists
 at least one / £ L, and the sum of characteristics of chains (x*,_, , . . . , x*,_i) for

 all I £ L is nonnegative. Therefore, there exists chain (x*,_, , . . . , x*,-i ) such that

 / £ L, and x (x*,_

 Therefore, for some x e W and for some y e Z, x >' yo, or jco y, or jc y.
 This contradicts the assumption. Therefore, R** is irrefllexive.

 If a b or a >' b then a R^* b. By lemma 3, (C, /4) is a warm glow function
 and there exists (/?, r) e Ve. a such that if a R b then a Rb. □

 Proof of Theorem 2 If for a given choice and aspiration function (C, A), >-' is
 irreflexive then, by Lemma 3, (C, A) is a warm glow function.

 Now suppose (C, A) is a warm glow choice and aspiration function. We need to
 show:

 (a) is irreflexive, and jc >-rev y jc y;
 (b) jc y 4» jc v* -v brev'y o jc H y.

 Proof of (a). By Lemma 2, jc y implies jc >rex y, and, therefore, >-' must
 be irreflexive. Now, if jc ^rev y, then jc R y holds for every warm glow pair (/?, r)
 underlying (C, A), and, by Lemma 4, this is possible only if jc >-' y.

 Proof of (b). By Lemma 2, jc >~'+ y implies jc y, and jc H y implies jc hrev y.

 What left to be proved is that jc >+v y implies jc y, and jc Kev y implies x H y.
 We start with the tolerance relation h first. Assume that for every warm glow pair
 (/?, r) underlying (C, A) , jc /?= r (y) holds. We need to show that if x ^ y, then
 there exists a chain (x, p) = ((jc

 there exists a chain (x, p) = ((jc, . . . , y), p) such that x (x, p) > 0. Suppose now that
 x y does not hold (and jc ^ y). Let Z = [z € X' {a:, y} s.t. x >' z does not hold}.
 Let W = [z e X' {jc, y} s.t. z >' y does not hold, and for every u e Z, z >-+ u does
 not hold}. By Lemma 4, there exists (/?, x) e Ve. a such that z R x for all z e Z, and
 y R z for all z e W. Also, by assumption, x R= r (y).
 Consider another pair (/?, r') such that x' (y) is R- lowest alternative such that

 x' (y) R jc, and if z R y then x' (z) = R - max {r (z) , x' (y)}, if y R z, then xf (z) =
 x (z). Note, that x' (z) 6 {r (z) , x' (y)}, and xf (z) /?= r (z) for every z e X. We
 show now that (3) holds for (/?, r'). Since y R jc, by definition of x' (y) , y /?= r' (y).
 If z R y, then z R y R= xf (y), and, by (3), z R= x (z), but x' (z) € {r (z) , xf (y)j,
 hence, z R= x' (z). If y R z, then x' (z) = x (z), and, by (3), z R= x' (z). Now
 suppose u R v. By (3), r (u) /?= r ( v ). If u R= y, then x' ( u ) R= x (u) R= x ( v ) and

 x ' (u) R= x' (y), but x' (v) e {x (v) , x' (y)}, hence, x' ( u ) R= xf (u). If y R u, then

 Ô Springer

This content downloaded from 129.2.19.102 on Wed, 22 Mar 2017 20:01:34 UTC
All use subject to http://about.jstor.org/terms



 Revealed preferences and aspirations 529

 y fi v , and x' (u) = r (w) R= t (v) = r ' (v). Therefore, (fi, x') is a warm glow
 pair.

 Now, since xf (y) R jc, by assumption, (fi, x') does not underlie (C, A). There
 exists issue B such that (fi, xf ) does not select C ( B ), while (fi, r) does. Since
 x '(fi (fi)) R= x (fi (fi)), it must be the case that x' (R (fi)) RA(B) fi=t(fi(fi)),
 and C (B) = A (fi). Now, if v R R (B ), then r'(fi(fi)) = r(fi(fi)). Hence,
 R (fi) R= y. Also, x' (R ( B )) e {x (R ( B )) , x' (y)} , xf (R ( B )) R x (R ( B )) imply
 x' (R (B)) = x' (y) R x (R ( B )), and, therefore, jc fi= r (R (fi)). To sum up, we have
 the following relations: R ( B ) R= y R= x' (fi (fi)) = x' (y) R x R=A ( B ) R=x (R ( B ))
 R= t (y).

 Since jc fi= A ( B ) , A (fi) £ Z, and A ( B ) ^ y. Therefore, jc >-'= A (fi). Since
 R ( B ) e B , and A ( B ) = C ( B ), by definition, A (fi) h fi (fi). Now, R (B) fi= y
 implies R(B) £ W. Suppose for some u e Z, R(B) >~'+ u. Then, by Lemma
 2, x (fi (fi)) Ru. But since u e Z, u R x must hold, therefore, x(R(B)) Rx.
 Contradiction. Therefore, R (B) £ W, but for every u e Z, fi (fi) >l+ m does not hold.
 It follows that either R ( B ) e {jc, y} or R (fi) >' y. Since R (fi) Rx, R ( B ) ^ jc,
 and, therefore, R (fi) >'= y. The relations jc >-'= A ( B ) I- R ( B ) >'= y imply that
 there exists a chain (x, p) = ((jc, . . . , y), p) such that x (x, p) > - 1 .

 Now intolerance relation >-+. We show that if for every warm glow pair (fi, r)
 underlying (C, A) , r (*) fi y, then there exists a chain (x, p) = ((jc, . . . , y), p)
 such that x (x, p) > 1. By (3), for every (fi, r) e Ve, a, x R=x (jc), and, hence,
 jc R y. Therefore, jc ^rev y and jc >' y. Suppose jc >-+ y does not hold. Let Z = {z €
 X' {x, y } s.t. x >' z does not hold}. Let W = {z e X' {jc, y } s.t. z >' y does not hold,
 and for every u e Z, z >' u does not hold}. By Lemma 4, there exists (fi, x) e Ve. a
 such that for all zx € W, zy e Z, zy R x R y R zx- Also, by assumption, r (jc) R y.

 Consider anotherpair (fi, x') such that if jc R= z,then x' (z) = R - min({r (z),y)h
 if zRx, then x' (z) = x (z). Note, that x' (x) = y , x' (z) e {r (z) , y } , x (z) R= x' (z)
 for every z e X, and if y R= z, then, by (3), y R= x (y) R= x ( z ), and r' (z) =
 x (z). We show now that (3) holds for (fi, r'). Since r (z) R= x' (z), and, by (3),
 z R=x (z) , z R= x' (z) for every z e X. Now suppose u R u. By (3), x (u) fi= x ( v ). If
 u Rx or y R= w, then x' (u) = x (u) R=x(v) fi= x' (u), and, hence, x' (u) R=
 If x R=u R y, then x R u,andr' (w) = fi-min({r (m) , y}) R= R- min({r (t>) , y}) =
 x' ( v ). Therefore, (/?, r') is a warm glow pair.

 Now, since x' (x) = y, by assumption, (/?, r') does not underlie (C, A). There
 exists issue B such that (/?, r') does not select C ( B ), while (/?, r) does. Since
 x (R(B)) R= x' (R (B)), it must be the case that x (R (/?)) RA(B) R= xf (R (B)),
 and C (B) = R(B). Moreover, since x(R(B)) R x' (R (B)) , r (R (B)) 7^
 x'{R(B )), and, therefore, jc R= R (B) , x(R(B)) R y, and x'(R(B)) - y.
 Also, by (3), R (B) R=x (R (B)). We have the following relations: jc R=R(B)
 R=x(R(B)) R A (B) R=x'(R(B)) = y.

 Since x R= R ( B ) , R ( B ) ^ Z. Therefore, R (B) e {jc, y} or jc /? (Ä). Since
 R (B) R y, x R ( B ). Now, /? (Z?) /? A (fi) implies C (B) = R(B) ¿ A (fi),
 and, hence, by definition, R (fi) >+ A (fi). Also, A (fi) fi= y implies A (fi) £ W.
 Suppose for some u e Z, A (fi) u . Then, by Lemma 2, A (fi) fiw. But since
 u e Z, u R x must hold, and A (fi) fi *. Contradiction. Therefore, A (fi) £ W, but
 for every u e Z, A (fi) m does not hold. It follows that either A (fi) 6 {jc, y} or
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 A (B) y. In either case, A ( B ) >'= y. The relations x R ( B ) A ( B ) >~'= y
 imply that there exists a chain (x, p) = ((jc

 8.6 Proof of Theorem 1

 Definition 14 Assume A is ordered. Let Ra be an order such that for any B e B

 A(B) = Ra(B).

 Let >' be a binary relation such that x >' y if and only if there exists an alternative z
 such that

 x Ra z, y Ra z, C (x, z) = x, C (y, z) = z, (15)

 and >r be a binary relation such that

 jc >r y if and only if jc >d y or x >' y . (16)

 Lemma 5 If A is ordered , and the LWARP and WG axioms hold, then the following
 statements are true:

 Step 1. If B e Bs, B ç B and A (ß) e B, then B e B' Also, if B',B2 e B'
 then B' U B2 € Bs.
 Step 2. >d is asymmetric and transitive, is transitive .
 Step 3. is asymmetric .
 Step 4. Ifx k , k >' j and j Rü k then x >' j.
 Step 5. is acyclic.
 Step 6. Ifx >' k, k >il j and j Ra k then x j.
 Step 7. >r is asymmetric.
 Step 8. Ifx >-J k , k j and x Ra k then x j.
 Step 9. >-' is acyclic.

 Step 1 . Since B ç B, A € B and A is ordered, A = A ( B ) and C ( B ) e

 B. Therefore, by the WG axiom, B e Bs implies B e Bs . Now, let B = B' U Bi.
 Then A (B) e B' or A ( B ) e Bi. Thus, B' U Bi e Bs .
 Step 2. Assume, by contradiction, that jc y and y >d x. Then, there exist
 B' € Bs and Bo € Bs such that {jc, jy} ç B', {at, y} ç #2, x - C(B') and
 y = C(B2). By Step 1, B = B' U B2 e Bs . If C(B) e B' , then, by LWARP,
 C(B) = jc. So, C(B) e {jc, y} ç B2. Hence, by LWARP, C(B) = C(B2) = y. A
 contradiction. The proof for the case C(B) e B2 is analogous.
 Now assume that jc >d y and y >d z. There exist B' € Bs and B2 e Bs
 such that {jc, y} ç Z?ļ, [y, z] ^ B2 , x = C(B') and y = C(B2). By Step 1,
 B = B' U B2 e Bs. So, either C(B) e B' or C(B) e B2. If C(B) e B2 , then,
 by LWARP, C(B) = C(B2) = y. So, y >-d x (because x e B). This contradicts
 jc >d y and the proved asymmetry of >d . Hence, C(B) e B'. By LWARP,
 C(B) = x. So, jc >d z (because z € B).
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 Step 3. Assume, by contradiction, that x >' j and j >' x. Then there are
 alternatives y ' and y 2 such that, for i = 1,2 , x Ra y,' j Ra >7, C (x, vi) =
 C (7, vi) = yi, C (jc, V2) = y2, C (7, >'2) = 7. In particular, A(yi, V2, 7) =

 j e {yi, 7} and {yi, 7} € Bs. By step 1, {yi , y2, 7} € ßv. If C(yi, y2, 7) = V2
 then, by WG axiom, {y2, 7 } e Bs . This contradicts ^4 (y2, 7) = C(y2, 7) = 7. So,
 C(yM . y2, 7) = yi» and yi y2. Analogously, A(yi, V2, x) = x € {>'2, *} and
 {y2, jc} € Bs imply {y 1 , V2, x] e Bs , and C (y 1 , >'2, x) = yi implies {y 1 , x } e Bs.
 This contradicts A (yi , x) = C(y ' , jc) = jc. So, C (y 1 , >'2, jc) = >'2, and V2 >d yi .
 Contradiction to Step 2.
 Step 4. By definition, there are alternatives y 1 and >2 such that k Ra >7 , jc Ra y ' , 7

 Ra yi* C(yi,jc) = x, C{y',k) = yi, C('2,k) = k, and C(V2,7) = >'2- So,
 A(yi,y2,^) = k e {yi,*} and {y',k} e Bs . By step 1, {yi,y2,£} € Bs .
 If C(yi,y2,£) = V2 then, by WG axiom, {y2,&} € ßv. This contradicts
 A(y2,k) = C(y2ik) = k. So, C(yi,y2,£) = yi. Thus, y' >d V2. Given that
 7 Ra k , it follows that 7 /?" >7, and /řtí(yi , >'2, 7) = 7 € { y 2 , 7} and {>'2, 7} € Bs.

 By step 1, { y 1 , y 2 . 7 } e Bs. If C(yi,y2,7) = >'2 then >'2 >d yi contradicting
 yi >d V2. So, C(yi , >2, 7) = y 1 . Thus, by WG axiom, (y 1 ,7)6 ßv. In addition,
 My'J) = 7. So, C(yi , 7) = yi.Now, A(yi, 7) = 7, (yi,x) = x, C(yi, 7) =
 y 1, C(y i,x) = * imply * j.
 Step 5. Step 3 shows that there are no cycles with 2 alternatives. Assume, by
 induction, that there are no cycles with n - 1 (or less) alternatives. Also assume,
 by contradiction, that {x'

 1 - 1 , and jc„ x' . If JC2 Ra x' then, by Step 4, jc„ >-' X2- If JC| Ra jc„
 then, by Step 4, xn-' >' x'. If jc,+i Ra jc, / = 2, . . . , n - 1 then, by step 4,
 x¡- 1 Xj+ 1 . Any of these cases produces a cycle with at most n - 1 alternatives.
 This violates the induction hypothesis. Hence, jc„ Ra j ci, and jc, Ra x¡+', i =
 1 1. Therefore, Ra is cyclic. A contradiction.
 Step 6. By definition there is an alternative y 1 such that k R° y' , jc Ra y j , C(yi , jc)

 = x j C(yi, k) = yi. So, {y 1, k] e B' yi >d k and k Ra y' . Now, given that
 7 Ra k then 7 Ra y' . By WG axiom and A(y' , k< j) = 7, [y' , k} e B' k >d 7,
 it follows that [y',k,j] e Bs. If C{y',k,j) = k then k > y ' contradicting
 y' >d k. So, C{y',k, j) = y'. In addition, A(yi,7) = A(y',k,j) = 7. Thus,
 by WG axiom, (y 1 , 7) G B' and C(yi, 7) = yj. Thus, A(yi, 7) = 7, C(yi, 7) =
 y i , A (yi , x) = jc, C(yi , jc) = jc. So, jc >' 7.
 Step 7. Assume, by contradiction, that k >r j and 7 >r k. Then, there are
 four cases to consider. But if k >d j and 7 >d k or if k >' j and 7 ^ k
 then a contradiction is immediately obtained given that >il and ^'are asymmetric.
 So, assume, by contradiction, that k >-'7 and 7 >d k. Then, there exists an
 alternative y such that A (y, 7) = 7 , y4 (y, /:) = C(y, 7) = y, C(y, ik) = k.
 So, {y, 7} e Bs . Hence, {y, /:} g Bs because C(y, 7) = y g {y, /:} and A (y, 7) =
 j k = A (y, /:). This is a contradiction because A (y, /:) = C(y, Ä:) = )k.
 Step 8. From k j it follows that there exists y such that A (y, 7) =
 7, C(y'j) = y, A(y,k) = k , C(y,/:) = From jc /?í7 k and /: /?" y it fol-
 lows that /4(y,*) = x. Now assume that C(y,jc) = jc. Then, by definition,
 x ^ 7. Now assume that C(''x) = y. Then, {v,jc} g B' It follows that
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 { v, k } e Bs (because C(v' x ) € { v, k] and A (y, x) = x > d A (y, k) = k). This
 is a contradiction because A (y, k) = C(y, k) = k.
 Step 9. Step 7 shows that there are no cycles with 2 alternatives. Assume, by
 induction, that there are no cycles with n - 1 (or less) alternatives. Also assume,
 by contradiction, that {x'

 1

 that Xj >- d Xj+ 1 >d Xj+2- This would produce a cycle with n - 1 alternatives
 which would violate the induction hypothesis. By Step 5, there must be some i*
 such that x¡* >d x/*+|. Then, x¡* and x¡*+' >' By Step 6,

 Ra x/* implies x¡*-' x¡*+ 1 . Now, by
 step 8, Xj* Ra Xj*+ 1 implies x¡* >' x¡*+2. Either way, a cycle with n - 1 alterna-
 tives is produced. A contradiction. □

 Proof of Theorem 1 The proof that the LWARP and WG axioms are satisfied under the
 warm glow theory with ordered aspirations is as follows: By Theorem 2 if (C, A) is a
 warm glow function then there is no chain with nonnegative characteristic connecting
 any alternative to itself. Suppose that LWARP does not hold, that is, B , B' e Bs, B c

 B', C (Bř) e B , and C (B) ^ C (B'). It follows that there is a chain C ( B ) >d
 C ( B' ) >d C (B) with zero characteristic. Next, suppose that the WG axiom does not
 hold. Then there exist two issues B e Bs and B' such that C ( B ) e B', A ( B ) >-=

 A (£') but B' i B' i.e. C ( B ') = A ( Bf ). Then the chain C (B) A (B)
 C ( B' ) h C (B) has zero characteristic. So, necessity is demonstrated by contradiction.

 The proof that LWARP and WG are sufficient conditions is as follows: Assume
 now that a choice and aspiration function (C, A) is such that A is ordered and the
 LWARP and WG axioms are satisfied. By Lemma 5, >r is acyclical. An acyclical
 binary relation may be extended (not necessarily uniquely) to an order. Let R be any
 extension of >r . So, R is a preference order such that

 if w >r y then w R y. (17)

 Given Jt € X, let X>v be the set of all alternatives z such that for some issue

 B e ß, x = C(B) and z = A(B). Note that z e TP implies x >d z. Let d(x) e TP
 be the element d e Vx such that d R= z for any z e T>x . If TP is empty then d(x) is
 not defined. Let Cx be the set of all alternatives d(y) where y is any alternative such
 that x /?= y and d (y) is defined. Let r(x) be the alternative such that r(jc) R z for any
 z e £' and if w ^ r(x) is such that w R z for any z e Cx, then w R t(jc). If Cx is
 empty then r(x) is such that a R=r(x) for every a e X.

 We now show that (/?, r) is a warm glow model that produces choice functions C.

 (a) If B e Bs, then C(B) = R(B). If B i B' then C(B) = A(B). So, C(B) e
 { R(B ), A(B)}. This follows immediately from (17).

 (b) If z e TP, then {jc.z} e B' A(x,z) = z, C(x,z) = x and x >d z. By
 definition, there exists some issue B e Bs such that x = C(B) and z = A(B) ^
 x. So, by (17), x >d z implies x R z. Let B - {x, z}. C(B) = x € B and
 A{B) = A(B) = z. By WG axiom, B e B' and C(B) - x.

 (c) For any x e X, and y such that x /?= y: if Vy ^ 0, then x Rd(y). If y = x , then
 d (jc) € TP and, by (17), jc ^ d d(x) implies x Rd(x).'ix Ry, then x R y Rd(y)
 implies, by transitivity of R, x R d(y).
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 (d) If jc R v, z e Vy and z Ra x , then z € 2>v. By b), {y, z] e Bs and A (y, z) = z. By
 WG axiom, A (jc, y, z) = A (y, z) implies {*, y, :.} e Bs . Thus, C(*, y, z) z.
 If C(jc, y, z) = y, then, y >í! x contradicting x R y and (17). So, C(x< y, z) = x
 and z € T>x .

 (e) For any B e B, if VR(B) is empty or A(B) Rd(R(B )), then C(B) = A(Z?).
 Assume, by contradiction, that A(Z?) ^ C(Z?). Then, B e Bs and, by a), C(B) =
 /?(/?). Let jc = C(B) and z = A(B). Note that z 6 T>x and, hence, Vx is not
 empty and ¿/(jc) R= z. This contradicts the assumption.

 (f) For any B e B, if d(R(B)) R= A(B) then C(B) = R(B). Let x = R(B ), z =
 A{B) and y = ¿/(jc). If jc = z then, by a), C (B) = R (B). So, assume x ^ z.
 From jc e Z? it follows that A (jc, z) = z. Now either C(x, z) = x or C (jc, z) = z.
 Assume that C(jc, z) = z. By definition, y e 2>v. By b), A (x, y) = y, C(jc, y) -
 jc. So, A (jc, y) = y, C(jc, y) = x, A (x, z) = z, C(x< z) = z implies z y.
 This contradicts y /?= z and (17). So, C(jc, z) = jc. Then, {jc, z} € B,v. Moreover,
 A(jc, z) = A(^) = z and C(jc, z) 6 Z?. By WG axiom, B e Bs . By a), C(Z?) =
 *(Ä).

 (g) r satisfies (3). Consider an element jc g X. If Cx is empty, then jc R= r (jc). If
 z € Cx then z = d (y) for some alternative y such that jc R= y and Vy ^ 0.
 So, by c), if z € £v then jc R z. So, if jc ^ r (jc) then, by definition, jc /? r(jc) .
 Now assume that ¿ť Ra. Then, Ca ç . This follows because if z € Ca then
 z = ¿/(y)forsomey suchthata R= y. By the transitivity of /?, a' Ry. So, z e Cü .

 If Ca is empty, then Ca is empty, and r (a) = z [a'). If Ca is not empty then, by

 definition, r (a) R z for any z 6 Ca . So, x(af) R z for any z € Ca. Thus, if Ca
 is not empty and r (a') ^ r (a) then, by definition, r(a') R r (a). If Cct is empty,
 then r(a') R= r (a), by definition.

 (h) If for some issue B, A(B) R= r(R(B)) then C(B) = A(^). IfP/?(Ä) isnotempty
 then, by definition, r(R(B)) Rd(R(B)). The conclusion now follows from the
 transitivity of R and step (e).

 (i) If for some issue B , r (R(B)) R A(B) then C(B) = R(B). Let z = A(B) and
 x = R(B). We can assume jc ^ z and that Cx is not empty. Otherwise, r(jc) R z
 cannot hold. It follows from r(jc) R z and Cx / 0 that there exists an alternative
 y such that jc R= y and ¿/(y) R= z. If ¿/(jc) R= z then the conclusion follows from
 (/). So, we can assume, without loss of generality, that there exists an alternative
 y such that x R y and d(y) R= z. If d(y) = z, then z e Pv, jc R y and z Ra jc,
 by step (d), imply z € Va . The conclusion now follows from definition of d(x)
 and (f). So, we can assume, without loss of generality, that exists an alternative
 y such that jc R y and d(y) R z. Now, either jc Ra d(y) or d(y) Ra x . Let's first
 consider the case * Ril d(y). It follows that z Ra d(y) (because z Ra x). So, z Ra y
 (because d(y) Ra y). Now, it follows that C(y, z) = y. To see this assume, by
 contradiction, that C(y, z) = z. But, A(z , y) = z and, by (b), d(y) e Vy implies
 C(y,¿/(y)) = y, A(y,¿/(y)) = ¿/(y). So, by (15 ), z ^ d (y). This contradicts
 d (y) R z. Now from C(y, z) = y and A (y, z) = z it follows that z g Vy . Then, as
 above, z e V-' x R y and z Ra x, by step (d), imply z e T>x' and the conclusion
 follows from definition of d(x) and (f). Now consider the remaining case in
 which d(y) Ra x. Let B = {y, ¿/(y)} and B = {jc, y, d(y)}. By (b), B g Bs and
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 A(B) = d(y) = A(B). This, combined with C(B) e B , implies, by WG axiom,
 that B e Bs . So, C(B) d(y). If C(B) = y, then y >■ x. This contradicts
 X R y and (17). So, C(B) = x. Hence, d (y) e V* . It now follows that 2>* is not
 empty and d(x) R= d(y). But d(y) R z. So,d(x) R z. The conclusion now follows
 from (f).

 By steps (g), (h) and (i), (/?, r) is a warm glow pair underlying (C, A). □

 8.7 Proof of Proposition 1

 If (C, A*) is a warm glow choice and aspiration function, then, by definition, ^C, Ã ^

 is a warm glow function. Now, suppose ^C, >4^ is a warm glow choice and partial
 aspiration function. In this case, Ac ¿ is not empty, and there exists aspiration function

 A e Ac à such ^at ^ extends A , and (C, A) is a warm glow function. Suppose, by
 contradiction, that (C, A*) is not a warm glow function. There exists chain x =
 (xo, . . . , x„) such that xo = x„ and x (x) > 0. For every issue B' in the chain, if A is
 defined on £/, then A* ( B¡ ) = A ( B¡ ) = A ( B, ), and if not, then A* ( B¡ ) = C (B¡). In

 either case, the same cyclical chain with nonnegative characteristic can be constructed
 for (C, A ), which contradicts the assumption that (C, A) is a warm glow function.

 To show that revealed preference and tolerance relations are the same, note that
 every chain constructed for (C, y4*) is also a chain with the same characteristic for any
 other warm glow function (C, A) such that A extends Ã. Therefore, the intersection of
 all sets of revealed relations for all such models is equal to the set of revealed relations

 for (C, A *). Moreover, since A * extends Ã , all revealed relations for ^C, ^ must be
 revealed for (C, A *). □
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