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 An Explanation of Anomalous Behavior in Models
 of Political Participation
 JACOB K. GOEREE California Institute of Technology
 CHARLES A. HOLT University of Virginia

 This paper characterizes behavior with "noisy" decision making for models of political interaction

 Scharacterized by simultaneous binary decisions. Applications include: voting participation games,
 candidate entry, the volunteer's dilemma, and collective action problems with a contribution

 threshold. A simple graphical device is used to derive comparative statics and other theoretical properties

 of a "quantal response" equilibrium, and the resulting predictions are compared with Nash equilibria

 that arise in the limiting case of no noise. Many anomalous data patterns in laboratory experiments based
 on these games can be explained in this manner.

 Many political and social decisions involve only
 two options: to vote or not, to enter a con-

 test or not, to join an alliance or not, etc. The
 apparent simplicity of these binary-choice situations is
 somewhat misleading in that the best decision requires
 correct beliefs about others' behavior. For instance,
 people may hesitate to go to a particular restaurant or
 bar when many others are likely to go, or as Yogi Berra
 said, "Nobody goes there anymore. It's too crowded."'
 In other cases, the rewards associated with each deci-
 sion may be contingent on getting a minimal number
 of decisions of a certain type, e.g., the choice by a coun-
 try of whether or not to join an alliance, or jump into
 world war, or impose an embargo. A similar example
 occurs when a majority vote is needed to approve a
 legislative pay raise that each legislator would prefer
 not to support if it would pass otherwise (Ordeshook
 1986, chap 3). Sometimes the minimal number of con-
 tributors needed is only one, as in the "volunteer's
 dilemma," where all players are better off if at least one
 of them incurs a cost from vetoing an option, attempt-
 ing a dangerous rescue, or volunteering to perform a
 task that benefits them all (Diekmann 1985).

 In all these examples, the question is whether inde-
 pendent choices made by different people will some-
 how generate the "correct" amount of participation or
 whether the inability to coordinate will lead to defi-
 ciencies such as excess entry or crowding, insufficient
 effort to produce a public good, or the failure of anyone
 to initiate an action that benefits all. Another interest-
 ing issue is how aggregate behavior patterns respond
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 1 Entry decisions in this context are known as the "El Farol"
 dilemma, named after a popular bar in Santa Fe (Morgan, Bell,
 and Sethares 1999).

 to changes in the number of people involved and the
 relevant costs and benefits of participation.

 This paper is motivated in part by the surprising and
 sometimes anomalous behavior patterns observed in
 many laboratory experiments that involve simple bi-
 nary choices. For example, Kahneman (1988) reports
 an experiment in which the number of people who de-
 cide to enter was approximately equal to a "capacity"

 parameter that determined whether or not entry was
 profitable. He remark, "To a psychologist, it looks like
 magic." Subsequent experiments have been based on
 similar models, and the general finding is that play-
 ers are able to coordinate entry decisions in a man-
 ner that roughly equates expected profits for entry to
 the opportunity cost (Ochs 1990; Sundali, Rapoport,
 and Seale 1995).2 However, the "magic" of efficient

 entry coordination has been called into question by
 recent experimental results. For example, Fischbacher

 and Thoni (2001) conducted an experiment in which
 a monetary prize is awarded to a randomly selected
 entrant, so the expected prize amount is a decreasing
 function of the number of entrants. Over-entry was

 observed, and it was more severe for larger numbers of

 potential entrants. This over-entry pattern is somewhat
 intuitive but contradicts the theoretical prediction that

 rewards should be equalized for the two options, inde-
 pendent of the number of potential entrants. Camerer
 and Lovallo (1999) also find over-entry when posten-
 try payoffs depend on a skill-based competition, but
 they report under-entry and positive net payoffs in the
 absence of such competition.

 Other interesting behavior patterns have been
 observed in experiments based on the volunteer's
 dilemma, in which everyone receives a benefit if at
 least one person incurs the cost of "volunteering" but
 each person would prefer to free-ride on others' ef-

 forts. The theoretical prediction is that an increase in
 the number of potential volunteers will reduce the

 probability that any one person volunteers, which is
 intuitive, and will decrease the probability that at least
 one person volunteers, which is unintuitive. Experi-
 mental data support the intuitive prediction but not the
 unintuitive one (Franzen 1995). Similarly, laboratory

 2 This successful coordination has been explained by models of adap-
 tation and learning (Erev and Rapoport 1998; Meyer et al. 1992).
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 results for binary coordination games and collective

 action problems support some theoretical predictions,

 but also generate intuitive data patterns that are not
 explained by standard game theory, as discussed below.

 The objective of this paper is to explore the common
 structural elements of a wide class of binary-choice
 games, and to provide a unified theoretical perspective

 on seemingly contradictory results, like the positive re-
 lationship between over-entry (or the probability of
 getting a volunteer) and the number of potential en-

 trants (or volunteers). Our approach involves relax-
 ing the extreme rational choice assumption of perfect

 maximizing behavior where people respond sharply to
 small payoff differences, which, in reality, are likely
 to be dwarfed by an array of emotions, perception
 biases, and unobserved individual differences in fair-
 mindedness, altruism, etc. Instead of trying to model all

 these dimensions explicitly, our approach is to replace
 the knife-edge responses to small payoff differences
 with "smoothed" stochastic responses that represent

 random variations in unobserved factors (Goeree and
 Holt 1999; McKelvey and Palfrey 1995; Palfrey and
 Rosenthal 1985, 1988). The broader value of this work
 is that it provides an enriched and empirically useful
 game theory that applies to the kinds of situations of
 concern to political scientists, i.e., those with a rich
 diversity of individual motivations and attitudes. In
 addition, we derive our results using a simple graphical
 device that can be used in a wide variety of seemingly
 unrelated binary-choice situations.

 TO PARTICIPATE OR NOT?

 A symmetric N-person participation game is charac-
 terized by two decisions, which we call participate and
 exit.3 Examples include the decision of whether or
 not to run for office, try to unseat an incumbent, or
 approach a wealthy donor seeking campaign contribu-
 tions. The payoff from participation is a function of
 the total number, n, who decide to participate, which
 is denoted r(n), defined for n < N. In a campaign entry
 game, for example, the payoff for all candidates may be
 a decreasing function of the number, n, who enter. The

 expected payoff for the exit decision is denoted c(n),
 which is typically nondecreasing in n (the number of
 players that enter). In many applications, c(n) is simply
 a constant that can be thought of as the opportunity
 cost of participation, but we keep the more general
 notation to include examples where a higher number
 of participants has external benefits to all, including
 those who do not participate (e.g., campaigning for
 civil rights; see Chong 1991).

 A strategy in this game is a participation probability,
 p e [0, 1]. In order to characterize a symmetric equi-
 librium, consider one player's decision when all others
 participate with probabilityp. Since a player's own pay-
 off is a function of the number who actually participate,

 3 The participation game terminology was introduced by Palfrey and
 Rosenthal (1983) in the context of the decision of whether or not
 to vote. This model is discussed below, under Voting Participation
 Games.

 the expected payoff for participation is a function of the
 number of other players, N - 1, and the probability p
 that any one of them will participate. Assuming in-
 dependence, the distribution of the number of other
 participants is binomial, with parameters N - 1 and

 p. This distribution, together with the underlying r(n)
 function, can be used to calculate the expected partici-

 pation payoff, which is denoted ne(p, N- 1). More
 precisely, re(p,N - 1) is defined to be the expected
 payoff if a player participates (with probability 1) when
 all N - 1 others participate with probability p. Simi-
 larly, ce(p, N - 1) is the expected payoff from exit
 when the N - 1 others participate with probability p.

 Equilibrium

 In a Nash equilibrium, players choose the decision that
 yields the highest expected payoff, or randomize in the
 case of indifference. Our goal is the explanation of
 "anomalous" data from laboratory experiments, so it
 is convenient to model a type of noisy behavior that
 includes the rational-choice Nash predictions as a limit
 case. One way to relax the assumption of noise-free,

 perfectly rational behavior is to specify a utility func-
 tion with a stochastic component. For example, people

 may be motivated to vote by a sense of citizen duty
 (Riker and Ordeshook 1968), the strength of which
 may vary across individuals and across time for the
 same individual as external factors change. Thus the
 expected payoff for participation, Jre, and the expected
 payoff for exit, ce, are each augmented by adding the
 stochastic term Ixei, where Ix > 0 is an "error" param-
 eter and the ei represent identically and independently
 distributed realizations of a random variable for deci-
 sion i = 1 (participate) or 2 (exit). The utility of partic-
 ipation is greater if we + E181 > Ce + E82, so that when
 Ix = 0 the decision with the highest expected payoff
 is selected, but higher values of Ix imply more noise
 relative to payoff maximization. This noise can be due
 either to errors (e.g., distractions, perception biases,
 or miscalculations that lead to nonoptimal decisions)
 or to unobserved utility shocks that make rational be-
 havior look noisy to an outside observer. Regardless
 of the source, the result is that choice is stochastic,
 and the distribution of the random variable determines
 the form of the choice probabilities.4 The participation
 decision is selected if rre + Ex1 > Ce + 82 or, equiv-
 alently, if E2 - 81 < (ne - Ce)/ix, which occurs with
 probability

 p =F [e(p, N - 1) - ce(p, N - 1) ] p--F
 L /^ J'  (1)

 where F is the distribution function of the difference
 E2 - 81. Since the two random errors are identically
 distributed, the distribution of their difference will
 be "symmetric" around 0, so F(0) = 1/2.5 The error

 4 For instance, a normal distribution yields the probit model, while a
 double exponential distribution gives rise to the logit model, in which
 case the choice probabilities are proportional exponential functions
 of expected payoffs.

 5 More formally, Pr(ei < e2) = 1/2, so Pr(i - £2 L 0) = F(0) = 1/2.
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 parameter, p, determines the responsiveness of partic-
 ipation probabilities to expected payoffs. Perfectly ran-
 dom behavior (i.e., p = 1/2) results as AL - o0, since
 the argument of the F(. ) function on the right side of
 Eq. (1) goes to zero and F(0) = 1/2 as noted above.
 Perfect rationality results in the limit as / - 0, since
 the choice probability converges to zero or one, de-
 pending on whether the expected participation payoff

 is less than or greater than the expected exit payoff.
 More generally, for /z > 0, Eq. (1) expresses the par-
 ticipation probability as a noisy best response to the
 expected-payoff-difference, which we also refer to as a

 "stochastic best response."
 Equation (1) characterizes a quantal response equi-

 librium (McKelvey and Palfrey 1995) if the participa-
 tion probabilityp in the expected payoff expressions on
 the right is equal to the choice probability that emerges
 on the left.6 Without further parametric assumptions,
 there is no closed-form solution for the equilibrium
 participation probability, but a simple graphical device
 can be used to derive theoretical properties and char-
 acterize factors that might cause systematic deviations
 from Nash predictions. The graph is based on a separa-
 tion of the expected-payoff-difference from a term that
 depends only on the noise elements (/ and the distribu-
 tion of random elements). To this end, apply the inverse

 of the F function to both sides of (1) and multiply by At
 to obtain /F-'(p) = e(p, N - 1) - ce(p, N- 1). The
 determination of the equilibrium participation proba-
 bility is illustrated in Figure 1. As p goes from zero
 to one on the horizontal axis, /F-1(p) increases from
 -oc to +oo, as shown by the thick curved line with a
 positive slope in the figure.7 Since the expected pay-
 off difference is continuous in p, it has to cross the
 AF-'(p) line at least once, which ensures the existence
 of a symmetric equilibrium.8 If the expected payoff
 difference we(p, N - 1) - ce(p, N - 1) is decreasing in
 p, the intersection will be unique. This case is illustrated
 in Figure 1, where the negatively sloped thin line at the
 left side of the figure represents the expected payoff dif-
 ference. This line intersects the "inverse distribution"

 line at the equilibrium probability labeled QRE on the
 left. Also, note that the point where the expected pay-
 off difference crosses the zero-payoff line constitutes
 a mixed-strategy Nash equilibrium, since players are

 only willing to randomize if expected payoffs for the

 6 The quantal response equilibrium, developed by political scientists
 (McKelvey and Palfrey 1995), has been applied to the study of in-
 ternational conflict by Signorino (1999). A general introduction to
 the usefulness of the quantal response approach in the analysis of
 political data can be found in Morton 1999.

 7 To see this, note that an expected-payoff-difference of -oo on the
 vertical axis will cause the participation probability to be zero, and
 an expected payoff difference of +oo will cause the participation

 probability to be one. This is why the thick "inverse distribution"
 line starts at -oo on the left side of Figure 1 and goes to +00 on the
 right.

 8 The existence of quantal response equilibria for normal-form
 games with a finite number of strategies is proved in McKelvey and
 Palfrey 1995, and that for normal-form games with a continuous
 strategy space in Anderson, Goeree, and Holt 2002.

 FIGURE 1. Quantal Response and Nash
 Participation Probabilities for Low-N and
 High-N Cases
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 two decisions are equal. This crossing point is labeled
 "NE Mix" in the figure.9

 Next consider the intuition for why the quantal re-
 sponse equilibrium is not typically at the intersection
 of the expected-payoff-difference line and the zero-
 payoff horizontal line in Figure 1. With equal expected
 payoffs for participation and exit, the person is indiffer-
 ent, and since F(0) = 1/2, the stochastic best response
 to such indifference is to participate with probability
 one-half. In the figure, this result can be seen by start-
 ing where expected payoffs are equal at the NE Mix
 point on the left and moving horizontally to the right,
 crossing the thick line at p = 1/2. This is not a quantal
 response equilibrium since thep we started with (at the
 NE Mix) is not the stochastic best response to itself. To
 find a stochastic best response to any given entry prob-
 ability p on the horizontal axis, first move in the ver-
 tical direction to find the associated expected-payoff-
 difference and then move horizontally (left or right) to
 the thick line, which determines the stochastic best re-
 sponse to that expected-payoff-difference. Equilibrium

 requires that the stochastic best response to the others'
 participation probability is that same probability, which
 occurs only at the intersection of the expected-payoff-
 difference and inverse distribution lines in Figure 1. To
 summarize, a symmetric quantal response probability is
 a stochastic best response to itself, whereas a symmet-
 ric Nash equilibrium probability is a best response to
 itself.10

 9 All the games considered in this paper are symmetric in the sense
 that players' payoff functions are identical. We only consider sym-
 metric mixed-strategy Nash equilibria for such games. It is sometimes

 possible to find asymmetric Nash equilibria for symmetric games, but
 without some coordination device these equilibria seem less plau-
 sible.

 10 At the "NE Mix" point in Figure 1, expected payoffs are equal
 and any probability is a best response, so the NE Mix probability is
 a best response to itself.
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 As long as the expected payoff difference is decreas-
 ing in p, it is apparent from Figure 1 that any factor
 that increases the expected payoff difference line for
 all values of p will move the intersection with the thick
 inverse distribution line to the right and, hence, raise
 the quantal response equilibrium probability. In an

 entry game, for example, the original n(n) function
 would be decreasing if expected rewards are decreasing

 in the number of entrants, and it is then straightfor-
 ward to show that ne(N - 1, p) is a decreasing func-
 tion of both arguments.'11 When the opportunity cost

 payoff from not entering is constant, it follows that

 the expected-payoff-difference re(p, N - 1) - ce(p,
 N- 1) is decreasing in p and N, so a reduction in the
 number of potential entrants will shift the thin line
 in the figure upward and raise the quantal response

 (QRE) probability, as represented by a comparison of
 the high-N case on the left with the low-N case on the
 right.

 The effect of additional "noise" in this model is easily
 represented, since an increase in the error parameter j
 makes the iiF-l(p) line steeper around the midpoint,
 p = 1/2, although it still passes through the zero-payoff

 line at this midpoint (see Figure 1). This increase in
 noise, therefore, moves the quantal response equilib-

 rium closer to one-half, as would be expected. In con-
 trast, as a reduction in ju makes the giF- (p) line flatter,
 and in the limit it converges to the horizontal line at
 zero as the noise vanishes. In this case, the crossings

 for the QRE and mixed Nash equilibria match up, as

 would be expected.
 Next, consider coordination-type games where par-

 ticipation can be interpreted as an individual decision
 of whether or not to help with a group production

 process that will only succeed if enough people help
 out. For example, participation in revolutionary activi-
 ties may be individually costly unless the movement

 reaches a critical mass. In such games, it does not pay
 to participate unless enough others do, so nr(n) will
 be less than c(n) for low n and greater than c(n) for
 high n. Thus the right side of Eq. (1) is increasing in
 the probability of participation. This property may re-

 sult in multiple quantal response equilibria since there

 can be multiple intersections when both the expected-
 payoff-difference and the inverse distribution lines are
 increasing in p (see Figure 2, which shows a case with

 11 Intuitively, holding N fixed, a higher probability of entering means
 that more people enter, which results in a lower expected payoff

 of entry. Similarly, holding p fixed, a higher number of potential

 entrants results in more entry. This can be made more precise as

 follows: suppose N is fixed and the entry probability is pi. Let the
 number of entrants be determined by drawing a random number that

 is uniformly distributed on [0, 1] for each player. If the number is less
 than pi, a player enters; otherwise the player stays out. When the

 probability of entering increases to p2 > pl, the number of entrants

 is at least the same as before for all possible realizations of the random

 variables, and greater for some realizations. (When a player's random
 variable is less than pi, it is certainly less than p2, leading to the

 same entry decision, and when it lies between p and p2, the player's

 decision changes from staying out to entering.) Likewise, when p is

 fixed, an increase in the potential number of entrants means that

 for all possible realizations of players' random draws, the number
 of entrants is the same or higher, which makes the expected payoff

 from entry the same or lower.

 FIGURE 2. Quantal Response and Nash
 Mixed Participation Probabilities for a Game
 with Positive Externalities
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 three intersections). With multiple crossings, any fac-
 tor that shifts the expected-payoff-difference line up-
 ward will move some intersection points to the left
 and others to the right. Thus the comparative statics

 effects are of opposite signs at adjacent equilibria, and

 we need to use an analysis of dynamic adjustment
 to restrict consideration to equilibria that are stable

 (the Samuelsonian "correspondence principle").12 A

 simple dynamic model can be based on the intuitive
 idea that the participation probability will increase
 over time when the "noisy best response" to a given

 p is higher than p. Thus dp/dt > 0 when F((re(p, N -
 1) - ce(p, N - l))//x) > p, or equivalently, p would
 tend to increase when ne(p, N - 1) - ce(p, N - 1) >

 ,uF-'(p) and decrease otherwise. For example, start
 at p = .6 in Figure 2, which gives a positive expected-
 payoff-difference and a stochastic best response of al-
 most .9, found by moving horizontally to the right. For
 this reason, a rightward arrow is present at p = .6 on
 the horizontal axis. The other directional arrows are
 found similarly, so there is an unstable QRE at about
 .3, with arrows pointing away. In this manner it can be
 seen that the quantal response equilibrium will be sta-
 ble whenever the expected-payoff-difference line cuts
 the inverse distribution line from above.

 Note that any factor that raises the payoff from
 participation, and hence shifts the expected-payoff-
 difference line upward in Figure 2, will raise the QRE
 participation probability if the equilibrium is stable and
 not otherwise. To summarize:

 Proposition 1. There is at least one symmetric quan-
 tal response equilibrium in a symmetric binary-choice
 participation game. The equilibrium is unique if the dif-
 ference between the expected payoff of participating and

 12 Similar dynamic-stability arguments were used by Palfrey and
 Rosenthal (1988) and Fey (1997).
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 that of exiting is decreasing in the probability of partici-

 pation. In this case, any exogenous factor that increases

 the participation payoff or lowers the exit payoff will

 raise the equilibrium participation probability. The same
 comparative statics result holds when there are multiple

 equilibria and attention is restricted to stable equilibria.

 It is useful to begin with a discussion of entry games
 since they are the simplest application. Moreover, the
 quantal response properties for these games also ap-

 ply to the stable equilibria in more complex applica-

 tions such as threshold contribution games, volunteer's

 dilemma, and voting. The reader who is primarily in-
 terested in one of these subsequent applications may
 wish to skip any of the later sections after reading as

 far as Proposition 2.

 ENTRY GAMES: UNDER-ENTRY AND
 OVER-ENTRY RELATIVE TO MIXED
 NASH PREDICTIONS

 A widely studied example that fits the binary-choice
 framework is an "entry" game, where the choice is
 between a risky entry decision with high potential pay-
 offs (if few others enter) and a secure exit payoff. For
 example, entry may correspond to launching a political
 campaign or filing an application for a limited num-
 ber of public broadcast licenses. There are N potential
 entrants, and we assume that if all others enter with
 probability one, the representative player would pre-

 fer to exit due to congestion, but if nobody else enters,
 then the player would prefer to enter: re(l, N- 1) <
 ce(1, N - 1) and tre(0, N - 1) > ce(0, N - 1). Consider
 a simple three-person congestion problem where each

 person's payoff from participation is one unless both
 others also participate, in which case congestion re-
 duces the payoff to zero. The exit payoff is c, with
 0 < c < 1. When both others participate with probabil-
 ity p, the probability of congestion isp2, so ne = 1 - 2,

 which is less than the exit payoff c when p = 1 and
 greater than the exit payoff when p = 0. In this ex-
 ample and in all other applications considered below,
 the expected-payoff-difference will be continuous and
 decreasing in p, so there is a unique p* for which

 re(p*, N - 1) = ce(p*, N - 1). (2)

 [For instance, in the three-person congestion prob-
 lem p* = (1 - c)1/2.] Since (2) implies indifference,
 it characterizes the unique symmetric Nash equilib-
 rium in mixed strategies. The net payoff for participa-
 tion, re(p, N - 1) - ce(p, N - 1), is decreasing inp, as
 shown by the "expected-payoff-difference" line on the
 left in Figure 1. As noted above, the crossing of this
 thin line and the horizontal line at zero represents the
 solution to Eq. (2) and is labeled "NE Mix" on the left
 side of the figure.

 In order to compare the Nash and quantal response
 equilibria, note that the thin lines representing the
 differences in expected payoffs are always negatively
 sloped in an entry game. First, consider the high-N
 case on the left, where the large number of potential
 entrants lowers the expected payoff associated with a

 given participation probability, and the resulting mixed

 equilibrium is less than one-half. The intersection of the
 negatively sloped thin line and the increasing inverse
 distribution line determines the quantal response par-
 ticipation probability, and this intersection will be to
 the right of the mixed Nash probability. The opposite

 occurs for the low-N case on the right side of the graph,
 where the low number of potential entrants results in a
 mixed equilibrium that is greater than one-half. In this
 low-N case, the QRE probability is biased downward
 from the Nash probability. One way to understand both
 cases is to note that the effect of adding noise is to push
 the equilibrium toward one-half.13

 Finally, recall that the thin lines in Figure 1 repre-
 sent the expected-payoff-difference on the right side of

 Eq. (1). At the QRE probability on the left, net ex-
 pected payoffs are negative and there is over-entry in
 this case of a high number of potential entrants. In
 contrast, the thin line lies above the zero line at the
 QRE probability on the right side, for the low-N case.
 This negative relationship between the number of po-
 tential entrants and the net returns from participation is
 consistent with the experimental results of Fischbacher
 and Thoni (2001) discussed in the Introduction.14 To
 summarize:

 Proposition 2. In the quantal response equilibrium for
 the entry game, there is over-entry resulting in negative

 net expected payoffs when the mixed-strategy Nash equi-

 librium is less than one-half The reverse effect, under-
 entry, occurs when the mixed Nash equilibrium is greater
 than one-half

 The implication of Proposition 2 is that the quantal
 response equilibrium for the entry game is always be-
 tween the Nash equilibrium and one-half. Therefore,
 an observed participation that is more extreme than
 the Nash prediction would contradict the quantal re-
 sponse equilibrium model for any error rate, g, and
 any distribution of stochastic shocks, F.

 Meyer et al. (1992) report an experiment in which
 subjects choose to enter one of two markets. With a
 group size of six, profits are equalized, with three in
 each market, so the equilibrium probability of entry

 is one-half. An immediate corollary to Proposition 2
 is that in this case QRE coincides with Nash and both
 predict an entry probability of one-half. This prediction
 is borne out by their data: the average of the number
 of people that enter each market is never statistically
 different from three in the 11 baseline sessions that

 13 In some games with strong strategic interactions, the "snowball"
 effects of small amounts of noise can push decisions away from the
 unique Nash equilibrium so strongly that they overshoot the mid-

 point of the strategy space, with most of the theoretical density at
 the opposite end of the set of feasible decisions from the Nash pre-
 diction. This is the case for some parameterizations of the "traveler's
 dilemma" (Capra et al. 1999). This prediction, that the data will be
 clustered on the opposite side of the midpoint decision from the
 Nash equilibrium, is borne out by the experimental evidence.

 14 In their game, a prize worth V is awarded randomly to one of the
 n players who purchase a lottery ticket at cost c, so r(n) = (V/n) - c.
 From this it can be shown that the expected-payoff-difference is

 decreasing in p and N.
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 they report (see their Table 3), even when the game is
 repeated for as many as 60 periods (see their Table 5).15

 Camerer and Lovallo (1999) provide support for the
 QRE under-entry prediction when the Nash probabil-
 ity of entry is greater than one-half. In their experiment
 subjects decide whether or not to enter a contest with a
 fixed number, c, of prizes. The entrants were randomly
 ranked and the top c entrants divide $50 according
 to their rank, while all other entrants lose $10. The
 exit payoff is simply 0, and the equilibrium number of
 entrants is (close to) c + 5. The parameters were chosen
 such that the Nash entry probability was greater than
 or equal to one-half in all treatments.16 Under-entry
 occurred in all of the eight sessions in their baseline
 treatment, which resulted in positive expected payoffs
 for entry (see their Table 4). The net expected payoff
 of entry across sessions and periods was $15, which
 translates into under-entry of one or two subjects per
 round.17

 The strongest evidence for the quantal response
 predictions in Proposition 2 can be found in Sundali,
 Rapoport, and Seale 1995. In their experiments, sub-
 jects received a fixed payoff of one for exit and an
 entry payoff that is increasing in market capacity,
 c, and decreasing in the number of entrants: 7(n) =
 1 + 2(c - n). Thus entry in excess of capacity reduces
 payoffs below one, the payoff for exit. It is straight-
 forward to derive the mixed Nash entry probability:
 p* = (c - 1)/(N - 1), which is approximately equal
 to the ratio of capacity to number of potential en-

 trants.18 The capacities for the various treatments were
 c = 1, 3,...,19, and with groups of N = 20 subjects,
 the Nash equilibrium probability ranged from p* = 0

 to p* = 18/19. Figure 3 shows the entry decisions av-
 eraged over all subjects, with the Nash predictions

 15 Meyer et al. (1992) also report some evidence that does not square
 with either the symmetric Nash or the quantal response predictions

 of our model. In particular, the frequency with which subjects switch
 markets is lower than the predicted frequency (50%). We conjecture
 that this "inertia" could be explained by an asymmetric quantal re-
 sponse equilibrium in which some people tend to enter with higher

 probability than others.

 16 The number of prizes was either 2, 4, 6, or 8, yielding equilibrium
 numbers of entrants (c + 5) of 7, 9, 11, or 13 respectively, which are
 always greater than or equal to half the group size (14-16).

 17 Camerer and Lovallo (1992) also report a second treatment in
 which subjects are told beforehand that their performance on sports
 or current events trivia will determine their payoff. This creates a

 selection bias, since people that participate in the experiment are
 more likely to think they will rank high when they enter (i.e., they
 are "overconfident"), neglecting the fact that other participants think

 the same ("reference group neglect"). Camerer and Lovallo propose
 overconfidence and reference group neglect as a possible explanation

 of the over-entry that occurs in this second treatment. This explana-
 tion is quite plausible, in that it is analogous to the failure to perceive
 a selection bias that causes winners in a common-value auction to

 be the ones who overestimated its value. Note that overconfidence

 cannot be the whole story, however, since this bias does not explain
 under-entry in their baseline treatment.

 18 To derive this symmetric mixed equilibrium, note that the ex-
 pected number of other people who enter is (N - 1)p, so if a per-
 son enters, the expected total number of entrants is 1 + (N - 1)p.
 Then n(n) can be used to calculate the expected payoff for entering:
 ne(p, N - 1) = 1 + 2(c - 1) - (N - 1)2p and the Nash equilibrium
 probability of entering follows by equating this expected payoff to

 the exit payoff of one, which yields the result in the text.

 FIGURE 3. Nash Predictions (Solid Line) and
 Observed Entry Probabilities (Diamonds)
 (Source: Sundali, Rapoport, and Seale 1995)

 data averages
 1or

 0,75 -

 0,5 -

 0,25

 0 0,26 0,6 0,76 1

 Nash orediction

 shown as the 45° line. Since each subject participated
 in 10 "runs" and there were three groups of 20 sub-
 jects, a data point in the figure is the average of
 10 * 3 * 20 = 600 entry decisions. Note that the entry
 frequency is generally higher than predicted by Nash
 for p* < 1/2 and lower than predicted for p* > 1/2, in
 line with the quantal response equilibrium predictions.

 To summarize, the quantal response analysis ex-
 plains the "magical" conformity to Nash entry predic-
 tions (e.g., Meyer et al. 1992), the under-entry in the
 Camerer and Lovallo 1999 baseline, the over-entry with
 many potential entrants observed by Fischbacher and
 Thoni (2001), and the systematic pattern of deviations
 from Nash predictions reported by Sundali, Rapoport,
 and Seale (1995). This general approach can be adapted
 to evaluate behavior in other contexts where payoffs
 for one decision are diminished as a result of congestion
 effects, as the next section illustrates.19

 THE VOLUNTEER'S DILEMMA

 There are many situations in which a player's decision
 to participate benefits others. In collective action prob-
 lems, for instance, the contributions of some have pos-
 itive returns for everyone involved, and these returns
 are increasing in the number of contributors. In some
 contexts, the critical number of participants is one, e.g.,

 19 The analysis presented here does not apply directly to the ex-
 periments reported in Ochs 1990, since his experiments involved
 more than two market locations, each with a different "capacity"
 that determined the number of entrants that could be accommodated

 profitably. Nevertheless, the data patterns with random regrouping
 ("high turnover") are suggestive of the quantal response results de-
 rived here. The locations with the most capacity (and high probabil-
 ities) consistently have a lower frequency of entry than required for
 a mixed-strategy Nash equilibrium, whereas the opposite tendency
 was observed for locations with the capacity to accommodate only
 one entrant profitably.
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 TABLE 1. Frequencies of Individual
 Volunteer Decisions (p) and of "No
 Volunteer" Outcomes
 N p P(No Volunteer)

 2 .65 .12

 3 .58 .07
 5 .43 .06

 7 .25 .13

 9 .35 .02
 21 .30 .00
 51 .20 .00

 101 .35 .00

 Source: Franzen(1995).

 when a volunteer is needed to issue a politically risky
 veto or sanction a group member who violated a norm.

 The dilemma in these situations is that volunteering
 is costly and players have an incentive to free ride on
 others' benevolence.

 In the volunteer's dilemma game studied here
 (Diekmann 1986), all players receive a benefit B if at
 least one of them incurs a cost, C < B. In this case,
 the expected payoff of participation, or "volunteer-

 ing," is simply a constant, B - C. The expected pay-
 off from "exiting" follows from the observation that

 when the N - 1 others volunteer with probability p,
 there is a (1 - p)-1 chance that no one volunteers, so
 ce(p, N - 1) = B(1 - (1 -p)N-l). Note that the vol-
 unteer's dilemma game satisfies the assumptions under-
 lying Figure 1, i.e., the difference between the expected
 payoff of participating and that of exiting is decreasing
 in p. The Nash probability of volunteering follows by

 equating these expected payoffs (as per Eq. [2]) to
 obtain

 ( C\ N-1
 p*= 1- . (3)

 This probability of volunteering has the intuitive prop-
 erties that it is increasing in the benefit, B, decreas-
 ing in the cost, C, and decreasing in the number of
 potential volunteers, N. However, the probability of

 getting no volunteers is (1 - p*)N. By Eq. (3) the
 probability of getting no volunteers in a Nash equi-

 librium is (C/B)N/(N-1), which is increasing in N, with
 lim NooP(No Volunteer)= C/B > 0. Unlike the in-
 tuitive comparative statics properties mentioned be-
 fore, this prediction is not supported by experimen-
 tal data. Table 1 reports experimental results for a
 one-shot volunteer's dilemma game with B = 100 and
 C = 50 (Franzen 1995). Note that the probability that
 any person volunteers is generally declining with N,
 as predicted by Nash.20 The probability that no one
 volunteers, however, is decreasing in N and converges
 to zero instead of C/B = 1/2.

 Next, consider the quantal response equilibrium for
 the volunteer's dilemma. Since the difference between
 the expected payoff of volunteering that of and exiting

 20 Franzen (1995) reports that the group-size effect is significant at
 the 5% level using a chi-square test with seven degrees of freedom.

 is decreasing in the probability of volunteering, Propo-
 sition 1 implies that the QRE probability of volunteer-

 ing is unique, decreasing in N and C, and increasing
 in B. Interestingly, the introduction of (enough) en-
 dogenous noise reverses the unintuitive Nash predic-

 tion that the probability of "no volunteer" increases
 with N.

 Proposition 3. In the quantal response equilibrium

 for the volunteer's dilemma game, the probability that
 no one will volunteer is decreasing in the number of

 potential volunteers for a sufficiently high error rate,
 gI. Furthermore, limNooP(No Volunteer) =0 for any
 ii >0.

 The proof of Proposition 3 is given in the Appendix.
 The intuition is that, in the presence of noise, the ad-

 dition of potential volunteers only results in a small
 reduction in the probability of volunteering, and the

 net effect is that the chance that someone volunteers

 will rise.21

 The unintuitive feature of the Nash equilibrium for
 the volunteer's dilemma (i.e., that the probability of
 getting no volunteer increases with N) parallels the

 result that the chance of convicting an innocent de-
 fendant under the unanimity rule (i.e., no acquittal
 votes) rises with the size of the jury (Feddersen and
 Pesendorfer 1998). The models differ in that jurors
 receive private signals about the likelihood that the
 defendant is guilty. In the Nash equilibrium, those that

 receive a guilty signal vote to convict while those with

 an innocent signal randomize between voting to convict

 or to acquit. As the jury size increases, an individual
 juror's propensity to vote to acquit with an innocent
 signal falls, and the chance that there is not a single
 vote to acquit rises. As a result, it becomes more likely
 that an innocent defendant is wrongfully convicted

 (Feddersen and Pesendorfer 1998). In laboratory jury
 voting experiments, subjects tend to vote strategically

 as predicted by the Nash equilibrium. However, the

 unintuitive numbers effect is not supported by experi-
 mental data and is not implied by a quantal response
 equilibrium analysis (Guarnaschelli, McKelvey, and
 Palfrey 2000).

 GAMES WITH MULTIPLE EQUILIBRIA:
 STEP-LEVEL PUBLIC GOODS GAMES

 In some binary-choice games the expected payoff func-
 tion for participating is not decreasing in p. For exam-
 ple, in any collective political activity where a critical

 mass is required to achieve a desired outcome (e.g.,
 regime change), the net reward from participating will
 be higher as others become more involved.22 There-
 fore, the payoff difference function is increasing in

 21 In the extreme case when Ci - 00, players volunteer with prob-
 ability one-half, irrespective of the number of potential volunteers,

 and the chance that no one volunteers falls exponentially, since the

 probability of no volunteer is 2-N.

 22 In the discussion that follows we treat the threshold as a sharp
 cutoff even though it is more reasonable in most contexts to model

 the threshold as a range of participation over which the probability of
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 the probability of participation, which permits mul-

 tiple crossings as shown in Figure 2. This is intuitive,
 since there may exist both low-participation equilib-
 ria and high-participation equilibria in such "coordi-
 nation" or "assurance" games.23 A particular example

 is a step-level public goods game, where N players de-
 cide whether or not to "contribute" at cost c. If the
 total number of contributions meets or exceeds some

 threshold n*, then the public good is provided and all
 players receive a fixed return, V, whether nor not they
 contributed. Here we assume that the contribution is
 like an effort that is lost if the threshold is not met,
 so there is "no rebate." The threshold n* could corres-

 pond to a required number of participants in an em-
 bargo or signatures on a petition.24

 In the standard linear public goods games without a

 step, observed contributions in experiments are posi-
 tively related to the marginal effect of a contribution on

 the value of the public good, known as the marginal per
 capita return (MPCR).25 Anderson, Goeree, and Holt
 (1998) have shown that a logit quantal response anal-
 ysis predicts this widely observed MPCR effect. This

 raises the question whether there is a similar measure
 or index that would predict the level of contributions
 in step-level public goods games. One would intuitively
 expect that contributions are positively related to the

 total (social) value of the public good (NV) and nega-
 tively related to the minimum total cost of providing it
 (n*c). Croson and Marks (2000) have proposed using
 the ratio of social value to cost, which they call the "step

 return:" SR = NV/n*c. Based on a meta-analysis of

 several step-level public goods games, they conclude,

 "... Subjects respond to the step return just as they
 correspond to the marginal per capita return (MPCR)
 in linear public goods games: higher step returns lead
 to more contributions."

 First, we consider whether there is a clear theoret-
 ical basis for expecting contributions to be positively
 related to step return measures. A contribution in this
 game pays off only when it is pivotal, i.e., when exactly
 n* - 1 others contribute, which happens with probabi-
 lity

 (N-l)n*-l(l-p)N-n*n* 1 (4)

 where, as before, p denotes the probability that others
 participate. The difference between the expected
 payoff of contributing and that of not contributing is

 success is sharply increasing. The use of a sharp cutoff simplifies the
 analysis and is standard in the literature (see, e.g., Lohmann 1994).

 23 Stability arguments can often be used to rule out the middle
 equilibrium if there are three crossings as in Figure 2. For low k/,
 this middle equilibrium is usually close to a mixed Nash equilibrium

 with "perverse" comparative statics properties. The high- and low-
 participation equilibria then correspond to low-effort and high-effort

 pure-strategy Nash equilibria that often arise in coordination games.

 24 Gilligan (2003) considers the problem of determining the "cor-
 rect" number of countries needed to ratify a treaty. A higher thresh-

 old indicating broader support typically requires a less restrictive

 agreement.

 25 This literature is surveyed in Ostrom's (1998) presidential address
 to the American Political Science Association and in Miller 1997.

 FIGURE 4. Expected-Payoff-Differences and
 the Inverse Distribution Line for Different
 Thresholds in Step-Level Public Goods Games

 therefore

 re(p, N - 1) - ce(p, N - 1)

 = V N -1 pn*-l(1- )N-n- c.  (5)

 The right side is a single-peaked function of p, and
 equating its derivative to zero yields a unique max-

 imum at p = (n* - 1)/(N - 1). Figure 4, drawn for
 V = 6, c = 1, and N = 10, shows these "hillshaped"
 expected-payoff-difference lines for three values of the

 threshold: n* = 3, 5, 8. (Please ignore the "n* = {5, 8}"
 line, which pertains to a multiple-step case considered
 later.) In each case there are two Nash equilibria in
 mixed strategies, determined by the crossings of the
 thin line with the horizontal line at zero. The inverse
 distribution line is plotted for the case of a logistic
 distribution, i.e., F(x) = 1/(1 + exp(-x)), and ,/ = 1.
 As before, the intersection of the inverse distribution
 line with the thin lines determines the quantal response
 equilibrium, which is unique for all three values of the
 threshold in this numerical example.26

 Recall that the step return is NV/n*c, which is in-
 creasing in N and V and decreasing in n* and c. In
 order to evaluate these properties in the context of
 the quantal response predictions, note that the bell-
 shaped nature of the expected payoff differences im-
 plies that there may be multiple quantal response equi-
 libria. It follows from Proposition 1, however, that any
 factor that shifts the expected payoff difference line
 upward will raise the equilibrium probability in a stable

 26 More generally, when the expected-payoff-difference line is in-
 creasing there may be multiple equilibria for some values of the

 error rate g. For instance, a slight upward shift in the "n* = 8" line
 in Figure 4 would result in three quantal response equilibria. The

 stability analysis associated with Figure 2 can be used to show that
 the middle equilibrium is unstable; see also Fey 1997 and Palfrey

 and Rosenthal 1988. The likelihood of having multiple equilibria

 is increased when /, is small and the iF- (p) line is essentially
 horizontal for p between zero and one.
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 equilibrium. Since the difference in Eq. (5) is increasing
 in V and decreasing in c, we conclude that the equi-
 librium contribution probability will be increasing in
 V and decreasing in c, just as indicated by the step
 return effect. Next, consider the effect of the numbers
 variables, N and n*, beginning with a somewhat infor-
 mal graphical analysis (precise results are presented
 in Proposition 4, below). Recall that the maximum of
 the expected-payoff-difference "hill" is at a probability
 of (n* - 1)/(N - 1), so an increase in N tends to shift
 this function to the left. Note that a leftward shift in
 the thin line labeled n* = 3 in Figure 4 will lower the
 equilibrium probability, but a slight leftward shift in the
 line labeled n* = 8 will move the intersection point up
 along the thick line and, hence, will raise the quantal
 response equilibrium probability. Thus an increase in N
 can result in a decrease in the equilibrium probability
 when the threshold is low and an increase when the
 threshold is high.27 The effects of changes in the thresh-
 old, n*, are similar. Note that the quantal response
 probability of contributing does not decrease mono-
 tonically with the threshold: when n* increases from 3
 to 5, the equilibrium probability increases from .43 to
 .56, and then drops to .27 when n* = 8. The intuition is
 that when the threshold rises and it is still likely that the
 public good will be provided, individual contributions
 will rise, but contributions drop dramatically when too
 many contributions are needed for provision. To sum-
 marize, in a quantal response equilibrium, a higher step
 return ratio leads to more contributions when it is due
 to a higher total value of the public good or a lower
 cost of provision, but not necessarily when it is due to
 an increase in the number of potential contributors or
 to a lower threshold. Thus the (admittedly theoretical)
 analysis here yields only qualified support for the use of
 the step return as a rough measure of the propensity to

 contribute in a binary step-level public goods game.28
 Of course, even when individual contributions rise

 in response to the increased threshold, the probability
 that the public good is actually provided may decrease,
 since more people are needed to meet the threshold.

 For the numeric example represented in Figure 4, the
 probability of success drops from .83 to .62 to practi-
 cally zero when n* is increased from 3 to 5 to 8. van
 de Kragt, Orbell, and Dawes (1983) report an experi-
 ment that implemented a step-level public goods game
 with binary contributions and found that increasing the
 number of contributors needed for success reduced the
 incidence of successful provision. The next proposition
 shows that these findings are in line with QRE predic-
 tions when there is sufficient noise.

 27 See, for instance, Offerman, Schram, and Sonnemans 1997 for
 experimental evidence on some of these comparative static results.

 28 Nor are the numbers effects in a Nash equilibrium necessarily
 consistent with the qualitative properties of the step return ratio.

 This is because an increase in the threshold n* shifts the maximum
 of the expected-payoff-difference line to the right in Figure 4, which
 is likely to shift the rightmost (stable) mixed Nash equilibrium to the
 right. Thus a rise in n*, which lowers the step return, can raise the
 mixed Nash contribution probability.

 FIGURE 5. QRE Probabilities of Individual
 Contribution and Successful Group Provision
 of a Step-Level Public Good, as a Function
 of the Provision Point

 1 probability of
 successful provision

 0,76

 QRE contribution
 05  probability

 0,25

 1 2 3 4 6 6 7 8 9

 step level number of contributors (n)

 Proposition 4. For a high enough error rate, pL, the
 quantal response equilibrium for the step-level public
 goods game is unique and predicts that individual con-
 tributions first rise and then fall with the threshold, n*,
 while the probability of successful provision always de-
 creases with n*.

 This proposition, which is proved in the Appendix,
 is illustrated in Figure 5, which was drawn for the case
 where V = 6, c = 1, N = 10, / = 1.5, and with the pro-
 vision point, n*, varying from 1 to 9. A movement to
 the right in the figure corresponds to an increase in the
 number of contributors needed for successful provi-
 sion, which reduces the probability of success in a quan-
 tal response equilibrium. As the step level is increased,
 individual contributions first increase to meet the
 challenge and then fall as the threshold becomes more
 unattainable. Interestingly, Palfrey and Rosenthal
 (1988) derive this result in an equivalent manner by
 introducing random, individual-specific "joy of giving"
 (or "warm-glow" altruism) shocks that are added to a
 person's payoff for a contribution decision.29 Proposi-
 tion 4 extends their analysis by showing that the prob-
 ability of successful provision is decreasing in n*.

 Finally, it is interesting to see how contribution be-
 havior changes as multiple steps, or thresholds, are in-
 troduced. Suppose, for instance, that in addition to the
 n* = 5 threshold, there is another threshold at n* = 8:
 with five or more contributions, everyone receives a
 return of one from the public good, while with eight
 contributions or more, the return is two. This multiple-
 step case can be analyzed in the same manner as before.

 29 The Nash equilibrium for the resulting game of incomplete infor-
 mation is mathematically equivalent to a quantal response equilib-
 rium. Palfrey and Rosenthal (1988) prove that individual contribu-
 tions first rise and then fall with the threshold (see their Table 2).
 They also show that the number of potential contributors, N, has the
 reverse effect: individual contributions first fall and then rise with
 increases in N.
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 Now there are two points at which one's contribution

 can be pivotal, and the expected payoff is the sum of the
 two effects. In terms of Figure 4, the expected payoff

 lines for n* = 5 and n* = 8 get "summed," as indicated

 by the n* = {5, 8} line in Figure 4 (the cost of con-
 tributing only enters once, which is why the endpoints
 of this are still at -1). The introduction of the extra
 threshold at n* = 8, which by itself results in a low
 contribution probability, dramatically increases contri-
 butions: the QRE contribution probability is .73 and
 the probability that at least five people contribute is as
 high as .97. An immediate extension of this analysis

 is that adding more steps, without reducing the payoff

 increment at any of the existing steps, will increase
 quantal response contribution probabilities in a binary
 public goods game.

 VOTING PARTICIPATION GAMES

 Another binary choice of considerable interest is the
 decision whether or not to vote in a small-group sit-
 uation where voting is costly and a single vote has
 a nonnegligible effect on the final outcome, e.g., the

 decision whether to attend a faculty meeting on a busy
 day. The analysis is similar to that of a step-level pub-
 lic goods game, since the threshold contribution, n*,

 corresponds to the number of votes needed to pass a

 favored bill. In a real voting contest, however, the vote
 total required to win is endogenously determined by
 the number of people voting against the bill. If there
 are two types of voters, those who favor a bill and
 those who oppose, then the equilibrium will be char-
 acterized by a participation probability for each type.
 Here we restrict attention to a symmetric model with

 equal numbers of voters of each type, equal costs of

 voting, c, and symmetric valuations: V if the preferred
 outcome receives more votes and zero otherwise. Ties

 in this majority rule game are decided by the flip of
 a coin. Note that the public goods incentives to free-
 ride are still present in this game, since voters benefit
 when their side wins, regardless of whether or not they

 incurred the cost of voting.
 The analysis of the majority voting game is a straight-

 forward application of the approach taken in the pre-
 vious sections. The gain from a favorable outcome is V,
 so the expected-payoff-difference is V times the prob-
 ability that one's vote affects the outcome minus the

 cost of voting. (Obviously, the net cost of voting could
 be small or even negative if voting is psychologically

 rewarding or if there are social pressures to vote, e.g.,
 to attend a faculty meeting.) Since a tie is decided by
 the flip of a coin, the probability that a vote is piv-
 otal is one-half times the probability that it creates or
 breaks a tie. In a symmetric equilibrium with common

 participation probability, p, it is straightforward to use
 the binomial formulas to calculate these probabilities,

 and the expected payoff difference for voting is then
 V/2 times this "influence probability" minus the cost of

 voting.30

 30 Suppose there are two groups of equal size, N, and consider a
 player in group 1. The player's vote is pivotal only when the number

 FIGURE 6. Nash and Quantal Response
 Voting Probabilities Under Majority and
 Proportional Rules

 Figure 6 shows the expected-payoff-difference as
 a function of the common participation probability,

 which is labeled "majority rule." The parameters that
 were used to construct this figure are taken from
 Schram and Sonnemans (1996b), who conducted an ex-
 periment based on this game form with N = 6, V = 2.5,
 and c = 1. The "U" shape of the expected-payoff-

 difference reflects the fact that a costly vote is wasted
 when the preferred outcome is already winning or
 when it cannot win even with an extra vote. Indeed,
 the expected value of a vote is highest when either no
 one else or everyone else votes, since a vote is then
 guaranteed to be pivotal by breaking or creating a tie.

 In contrast, when all others vote with probability 1/2,
 one extra vote is likely to be superfluous or not enough
 and its expected value is therefore small. As in previous
 sections, the mixed Nash prediction is determined by
 where the expected-payoff-difference line crosses the
 zero line: there are two Nash equilibria, one in which
 almost no one votes and another in which almost ev-
 eryone votes (Palfrey and Rosenthal 1983).

 The quantal response equilibrium is determined by
 the intersection of the expected-payoff-difference line
 and the inverse distribution function (thick lines).31

 of voters in group 1 is equal to n2 - 1 or n2, where n2 denotes the

 number of voters in group 2, which happens with probability

 n2=l 2 1

 + j(N) (N )22( -22n21 n 2 02
 n2=0

 where, as before, p denotes the probability with which all others (in
 both groups) vote. The first term represents the probability that a tie

 is created and the second term is the probability that a tie is broken.

 A player's expected payoff is V/2 times this "influence probability"

 minus c, the cost of voting.

 31 Palfrey and Rosenthal (1985) use essentially the same techniques
 to determine the Bayesian-Nash equilibrium in a voting game with
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 The gL parameter of .8 used to construct the steeper

 line was selected so that the QRE prediction would
 be at about the same level (30% to 50%) as the vote
 participation probabilities reported by Schram and
 Sonnemans (1996b) in the initial periods of their ex-
 periment. Interestingly, the voting probabilities started

 high and then decreased to stabilize somewhere in the
 20% to 30% range. This downward trend is crudely
 captured by a reduction in the noise parameter 4/ to .4
 as indicated by the second inverse distribution line in
 Figure 6.32

 Schram and Sonnemans (1996b) also considered a
 "proportional rule" game in which the payoff for all
 participants is the proportion of votes for their pre-
 ferred outcome, minus the cost of voting if they voted.
 Again, it is straightforward to use the binomial for-
 mula to calculate the expected proportion of favorable
 votes, contingent on one's own decision of whether
 to vote, as a function of the common participation
 probability, p.33 The expected payoff difference for
 this proportional representation game is the increase
 in the expected proportion of favorable votes, minus
 the cost of voting. This difference is declining every-
 where because one's vote has a smaller impact on the
 vote proportion as the probability of others' participa-

 tion increases. The expected-payoff-difference line is
 labeled "proportional rule" in Figure 6, where the pa-
 rameters are again taken from Schram and Sonnemans
 (1996b): N = 6, V = 2.22, and c = 0.7. The Schram and
 Sonnemans data for the proportional rule experiments,
 plotted as the lower line in Figure 7, started in the 30%
 to 40% range and ended up between 20% and 30%
 in the final periods. Note that participation is initially
 higher with the majority rule than with the proportional
 rule, while this difference disappears in the final peri-
 ods of the experiment when the voting probabilities

 are close to 25%, well above the Nash predictions for
 these games. This result is not surprising from a QRE
 point of view, since the two expected-payoff-difference

 lines cross at p = .25, at which they intersect with the
 inverse distribution line (for /z = .4). The result, how-
 ever, is unexplainable by a Nash analysis for which
 the intersection of the two expected-payoff-difference
 lines plays no role and only "crossings at zero" mat-

 incomplete information. In their paper, individual cost-of-voting
 shocks are added to each person's payoffs. The resulting Bayesian-

 Nash equilibrium is mathematically equivalent to a quantal response

 equilibrium.

 32 Alternatively, this downward adjustment could be explained by
 the # = .4 line, together with the dynamic stability argument under
 To Participate or Not? (above), which produces directional move-
 ments of the type indicated by the arrows on the horizontal axis in

 Figure 2.
 33 Using the same notation as before, the expected payoff difference
 for a player in group 1 is

 N-1 " N -1 N nm+ _1 _n
 SnN n2 n + n2 + 1 l + 2
 n1 =o n2 =0

 X pnl+n2(1 _p)2N-nl-n2- - C.

 where the outside sum pertains to the decisions of the N - 1 others
 of one's own type, and the inside sum pertains to the N voters of the

 other type.

 FIGURE 7. Voting Participation Rates with
 Random Matching (Source: Schram and
 Sonnemans 1996b)
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 ter. For the parameter values of the experiment, these

 crossings are at p = .05 and p = .95 for the majority
 rule treatment and at p = .09 for the proportional rule

 treatment, and seem to have little predictive power
 for the results of the Schram and Sonnemans 1996b
 experiment.34 To summarize, both the qualitative data
 patterns and the magnitude of the observed voting

 probabilities are consistent with a QRE analysis (but
 not with Nash), as can be seen from Figures 6 and 7.35

 This general approach may be extended to cover

 cases with asymmetries, e.g., when one type is more
 numerous than another. With asymmetries, the equi-

 librium will consist of a participation probability for
 each type. These two probabilities will be determined
 by two equations analogous to Eq. (1), with the ex-
 pected payoff for participation (voting) being a func-
 tion of the number of potential voters of each type

 and the equilibrium participation probabilities. While
 a simple graphical analysis of this asymmetric model

 is not possible, it is straightforward to proceed with

 numerical calculations, for example, to show that the

 smaller group is more likely to vote when the costs of

 voting are symmetric (Palfrey and Rosenthal 1983).36

 CONCLUSION

 Many strategic situations are characterized by binary
 decisions, e.g., whether or not to vote, volunteer,

 34 See also Schram and Sonnemans 1996a for a similar experiment
 with slightly different parameter values.
 35 Note from Figure 6 that the participation probabilities predicted
 by the quantal response equilibrium are roughly the same under
 majority rule and proportional rule. This similarity is due to the

 specific parameters used in the experiment and cannot be interpreted
 as a general empirical prediction.

 36 Cohen and Noll (1991) report that members of the majority coali-
 tion abstain more frequently in congressional roll call votes than
 members of the minority coalition. Cohen and Noll note that one
 cost of voting is that of alienating some of the constituents who
 might disagree on the proper vote of their representative.
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 attend a congested event, or perform a costly task

 with social benefits. In this paper we present a simple

 model of equilibrium behavior that applies to a wide

 variety of seemingly unrelated binary-choice games,
 including coordination, public goods, entry, voting par-

 ticipation, and volunteer's dilemma games. The model
 captures the feature that the decision, whether or not
 to participate, may be affected by randomness, either
 in preferences (e.g., entry or voting costs) or in deci-
 sion making (due to perception or calculation errors).
 The resulting quantal response equilibrium (McKelvey
 and Palfrey 1995) incorporates this randomness in
 the form of an error parameter and nests the stan-

 dard rational-choice Nash equilibrium as a limiting
 case.

 The quantal response equilibrium tracks many be-
 havioral deviations from Nash predictions, e.g., the
 tendency for entry to match the Nash predictions when
 the prediction is one-half and for excess entry when
 the Nash prediction is below one-half. In other words,
 a model with behavioral noise is capable of explaining
 the "magical" accuracy of Nash predictions in some
 experiments and the systematic deviations in others.
 The observed over-entry when Nash predictions are
 low is analogous to the over-participation in voting
 experiments, which is explained by a quantal response
 analysis. The participation rates in these experiments
 are roughly the same for the majority and proportional
 outcome rule treatments, which are consistent with the-

 oretical calculations for the parameters used in the ex-
 periments. Similarly, the quantal response model tracks
 intuitive "numbers effects" observed in volunteers'
 dilemma and step-level public goods experiments, both
 when these effects are consistent with Nash predictions
 and when they are not.

 The quantal response equilibrium generalizes the
 standard Nash theory by allowing for stochastic ele-
 ments. The scale of these elements, as measured by the
 error rate ,/, determines how closely decisions match
 perfect-rationality predictions. Despite the unspecified

 nature of the stochastic elements, the quantal response

 equilibrium provides clear, falsifiable predictions for
 many of the binary-choice models considered in this
 paper. For example, the predicted participation prob-
 abilities for the entry games are less extreme than
 the Nash predictions (i.e., they lie between one-half
 and the mixed-strategy Nash equilibrium) for any er-
 ror distribution F. Similarly, the predicted volunteer
 rates for the volunteer's dilemma are less extreme
 than the Nash predictions since the expected-payoff-
 difference is decreasing in the probability of volun-
 teering. In addition, there are key differences between
 Nash and quantal response equilibrium predictions
 such as the effect of large numbers on the probabil-
 ity of getting at least one volunteer or one vote to
 acquit under unanimity. Taken together, these results
 indicate that standard "rational-choice" game theory
 can be enriched in a manner that increases its behav-
 ioral relevance for a wide class of situations. More-
 over, the simple nature of the graphical equilibrium
 analysis will aid researchers in other binary-choice
 applications.

 APPENDIX

 Proof of Proposition 3

 The probability, P, that no one volunteers is given by
 (1 - p)N, where the QRE probability of volunteering, p, sat-
 isfies:

 utF-l(p) = B(1 -p)N-' - C.  (Al)

 Combining these equations and using the fact that F-'(p) is
 symmetric, i.e., F-1(p) = -F- (1 - p), allows one to express
 (Al) in terms of the probability that no one volunteers:

 LF-l(P) = C - BP  (A2)

 from which the derivative of P with respect to N can be
 established as

 dP Plog(P) Bf(F-I(p1/N)) - P-1+2/N

 dN N (N - 1)Bf(F- (P1/N)) + tP-l+2/N

 Note that dP/dN can only be nonnegative when /z <
 pI-(2/N)Bf(F(p1/N)). The right side of this inequality is

 bounded by Bmax(f), so dP/dN has to be negative for large

 enough /. Finally, suppose, in contradiction, that limN-woo
 P > 0. This implies that p1/N tends to 1, so /F-(pl/N) > o0
 when 1/ > 0. This contradicts (A2) since the right side limits to
 C-BP, which is finite. Hence, P tends to zero when N tends
 to infinity. In fact, from (A2) it follows that for large N, P
 converges to F(C/x)N, which tends to zero since F(C/x) < 1
 for / > 0. QED.

 Proof of Proposition 4

 The QRE probability of contributing, p, satisfies

 utF-l(p) = VPJ(p) - c,  (A3)

 where w > 1 denotes the threshold and PU(p) is the proba-

 bility that w - 1 of the N - 1 others contributed (see Eq. [6]).
 The solution to (A3) is unique when the derivative of
 the left side is everywhere greater than that of the right
 side. The derivative of PU(p) with respect to p is given by
 ((w - 1)/p - (N - w)/(1 -p))PU(p) and the relevant con-
 dition for uniqueness is therefore

 ju > Vf(F-'(p))((w - 1)/p - (N- w)/(1 -p))PU, (A4)

 Note that the right side is negative when w = 1, and for w > 2
 it is less than Vf(F-1(p))PU(w - 1)/p. The latter expression

 can be rewritten (N - 1)Vf(F-l(p))P ', which is bounded
 by (N - 1)Vmax(f). So for j > (N - 1)Vmax(f ), the quan-
 tal response probability of contributing is unique for all val-
 ues of the threshold. The derivative of PN(p) with respect to
 w < N (holding p fixed) is Pw +(p) - Pf(p), which simplifies
 to Pf(p)(1 - w/(N - w)(1 - p)/p). Together with (A3) this
 implies that the derivative of the QRE probability, p, with
 respect to the threshold, w, is given by

 dp 1-p
 dw N- w

 Vf(F-1(p))((N - w)/(1 -p) - w/p)PN

 x. + Vf(F-1(p))((N- w)/(1 -p) - (w - l)/p)P
 (A5)

 Note that the denominator of the second fraction on the
 right side is positive when the condition for a unique QRE
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 (Eq. [A4]) is satisfied. The sign of dp/dw is then determined
 by the numerator, which is positive iff p > w/N. The intu-
 ition for this result is straightforward: as long as the "inverse
 distribution" line intersects the "expected-payoff-difference"
 line to the right of its maximum (i.e., p > w/N), an increase
 in w shifts the expected-payoff-difference to the right and
 moves the intersection point upward. The reverse happens
 for higher values of w when the inverse distribution line cuts
 the expected-payoff-difference line to the left of the maxi-
 mum (see also Palfrey and Rosenthal 1982).

 The probability, QN, that the public good is provided is
 given by

 NE ) k1- N-k
 k=w

 and its derivative with respect to w (for w < N) is

 dQ l dQ dp _ dp 1 -p
 dw dp dw =N dw N- w

 (A6)

 Combining (A5) and (A6) shows that QN is decreasing in w.
 QED.

 REFERENCES

 Anderson, Simon P., Jacob K. Goeree, and Charles A. Holt. 1998.
 "A Theoretical Analysis of Altruism and Decision Error in Public
 Goods Games." Journal of Public Economics 70: 297-323.

 Anderson, Simon P., Jacob K. Goeree, and Charles A. Holt. 2002.
 "The Logit Equilibrium: A Perspective on Intuitive Behavioral
 Anomalies." Southern Economic Journal 69 (1): 21-47.

 Camerer, Colin, and D. Lovallo. 1999. "Overconfidence and Excess
 Entry: An Experimental Approach." American Economic Review
 89 (March): 306-18.

 Capra, C. Monica, Jacob K. Goeree, Rosario Gomez, and Charles
 A. Holt. 1999. "Anomalous Behavior in a Traveler's Dilemma?"

 American Economic Review 89 (June): 678-90.
 Chong, Dennis. 1991. Collective Action and the Civil Rights Move-

 ment. Chicago: University of Chicago Press.
 Cohen, Linda R., and Roger Noll. 1991. "How to Vote, Whether to

 Vote: Strategies for Voting and Abstaining on Congressional Roll
 Calls." Political Behavior 13 (2): 97-127.

 Croson, Rachel T. A., and Melanie Beth Marks. 2000. "Step Returns
 in Threshold Public Goods: A Meta- and Experimental Analysis."
 Experimental Economics 2 (3): 239-59.

 Diekmann, Andreas. 1985. "Volunteer's Dilemma." Journal of Con-
 flict Resolution 29 (4): 605-10.

 Diekmann, Andreas. 1986. "Volunteer's Dilemma: A Social Trap
 Without a Dominant Strategy and Some Empirical Results." In
 Paradoxical Effects of Social Behavior: Essays in Honor of Anatol
 Rapoport, ed. A. Diekmann and P Mitter. Heidelberg: Physica-
 Verlag, 187-97.

 Erev, Ido, and Amnon Rapoport. 1998. "Coordination, "Magic," and
 Reinforcement Learning in a Market Entry Game." Games and
 Economic Behavior 23 (May): 146-75.

 Feddersen, Timothy, and Wolfgang Pesendorfer. 1998. "Convicting

 the Innocent: The Inferiority of Unanimous Jury Verdicts under
 Strategic Voting." American Political Science Review 92: 23-36.

 Fey, Mark. 1997. "Stability and Coordination in Duverger's Law: A
 Formal Model of Preelection Polls and Strategic Voting." Ameri-
 can Political Science Review 91 (1): 135-47.

 Fischbacher, Urs, and Christian Thoni. 2001. "Inefficient Excess
 Entry in an Experimental Winner-Take-All Market." University
 of Zurich. Working paper No. 86.

 Franzen, A. 1995. "Group Size and One Shot Collective Action."
 Rationality and Society 7: 183-200.

 Gilligan, Michael J. 2003. "Is There a Broader-Deeper Tradeoff?"

 New York University, Photocopy.
 Goeree, Jacob K., and Charles A. Holt. 1999. "Stochastic Game The-

 ory: For Playing Games, Not Just for Doing Theory." Proceedings
 of the National Academy of Sciences 96 (September): 10564-567.

 Guarnaschelli, Serena, Richard D. McKelvey, and Thomas R.
 Palfrey. 2000. "An Experimental Study of Jury Decision Making."

 American Political Science Review 94 (2): 407-23.
 Kahneman, Daniel. 1988. "Experimental Economics: A Psycholog-

 ical Perspective." In Bounded Rational Behavior in Experimental
 Games and Markets, Ed. R. Tietz, W. Albers, and R. Selten. New

 York: Springer-Verlag, 11-18.
 Lohmann, Susanne. 1994. "Dynamics of Informational Cascades:

 The Monday Demonstrations in Leipzig, East Germany, 1989-
 1991." World Politics 47: 42-101.

 McKelvey, Richard D., and Thomas R. Palfrey. 1995. "Quantal
 Response Equilibria for Normal Form Games." Games and
 Economic Behavior 10: 6-38.

 Meyer, Donald J., John B. Van Huyck, Raymond C. Battalio,

 and Thomas R. Saving. 1992. "History's Role in Coordinating

 Decentralized Allocation Decisions: Laboratory Evidence on Re-

 peated Binary Allocation Games." Journal of Political Economy

 100 (April): 292-316.
 Miller, Gary J. 1997. "The Impact of Economics on Contemporary

 Political Science." Journal of Economic Literature 35: 1173-1204.
 Morgan, Dylan, Anne M. Bell, and William A. Sethares. 1999. "An

 Experimental Study of the El Farol Problem."Presented at the
 Summer ESA Meetings, Tucson.

 Morton, Rebecca. 1999. Methods and Models: A Guide to the Em-

 pirical Analysis of Formal Models in Political Science. Cambridge:

 Cambridge University Press.
 Ochs, Jack. 1990. "The Coordination Problem in Decentralized Mar-

 kets: An Experiment." Quarterly Journal of Economics 105 (May):
 545-59.

 Offerman, Theo, Arthur Schram, and Joep Sonnemans. 1998. "Quan-

 tal Response Models in Step-Level Public Goods." European

 Journal of Political Economy 14: 89-100.
 Ordeshook, Peter C. 1986. Game Theory and Political Theory.

 Cambridge: Cambridge University Press.
 Ostrom, Elinor. 1998. "A Behavioral Approach to the Rational

 Choice Theory of Collective Action." American Political Science

 Review 92 (1): 1-22.
 Palfrey, Thomas R., and Howard Rosenthal. 1983. "A Strategic

 Calculus of Voting." Public Choice 41: 7-53.
 Palfrey, Thomas R., and Howard Rosenthal. 1985. "Voter Participa-

 tion and Strategic Uncertainty." American Political Science Review

 79: 62-78.

 Palfrey, Thomas R., and Howard Rosenthal. 1988. "Private Incen-

 tives in Social Dilemmas." Journal of Public Economics 35: 309-32.

 Riker, William H., and Peter Ordeshook. 1968. "Theory of the Cal-
 culus of Voting." American Political Science Review 62 (1): 25-43.

 Schram, Arthur, and Joep Sonnemans. 1996a. "Voter Turnout as
 a Participation Game: An Experimental Investigation." Inter-
 national Journal of Game Theory 25 (3): 85-406.

 Schram, Arthur, and Joep Sonnemans. 1996b. "Why People Vote:

 Experimental Evidence." Journal of Economic Psychology 17:
 417-42.

 Signorino, Curtis S. 1999. "Strategic Interaction and the Statistical

 Analysis of International Conflict." American Political Science
 Review 93 (June): 279-97.

 Sundali, James A., Amnon Rapoport, and Darryl A. Seale. 1995.

 "Coordination in Market Entry Games with Symmetric Players."

 Organizational Behavior and Human Decision Processes 64: 203-

 18.
 van de Kragt, Alphons, John M. Orbell, and Robyn M. Dawes. 1983.

 "The Minimal Contributing Set as a Solution to Public Goods

 Problems." American Political Science Review 77 (March): 112-

 22.

 213

 American Political Science Review  Vol. 99, No. 2

This content downloaded from 129.2.19.102 on Sun, 30 Dec 2018 03:48:05 UTC
All use subject to https://about.jstor.org/terms


	Contents
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213

	Issue Table of Contents
	American Political Science Review, Vol. 99, No. 2 (May, 2005), pp. i-viii, 153-313
	Front Matter
	Are Political Orientations Genetically Transmitted? [pp. 153-167]
	Ambivalence, Information, and Electoral Choice [pp. 169-184]
	When Moderate Voters Prefer Extreme Parties: Policy Balancing in Parliamentary Elections [pp. 185-199]
	An Explanation of Anomalous Behavior in Models of Political Participation [pp. 201-213]
	Civic Engagement and Mass-Elite Policy Agenda Agreement in American Communities [pp. 215-224]
	Madison's Opponents and Constitutional Design [pp. 225-243]
	Flexing Muscle: Corporate Political Expenditures as Signals to the Bureaucracy [pp. 245-261]
	Policy and the Dynamics of Political Competition [pp. 263-281]
	Forum
	Do Get-Out-the-Vote Calls Reduce Turnout? The Importance of Statistical Methods for Field Experiments [pp. 283-300]
	Correction to Gerber and Green (2000), Replication of Disputed Findings, and Reply to Imai (2005) [pp. 301-313]

	Back Matter



