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 FIRST IMPRESSIONS MATTER:

 A MODEL OF CONFIRMATORY BIAS*

 MATTHEW RABIN AND JOEL L. SCHRAG

 Psychological research indicates that people have a cognitive bias that leads

 them to misinterpret new information as supporting previously held hypotheses.

 We show in a simple model that such confirmatory bias induces overconfidence:

 given any probabilistic assessment by an agent that one of two hypotheses is true,

 the appropriate beliefs would deem it less likely to be true. Indeed, the hypothesis

 that the agent believes in may be more likely to be wrong than right. We also show

 that the agent may come to believe with near certainty in a false hypothesis

 despite receiving an infinite amount of information.

 The human understanding when it has once adopted an

 opinion draws all things else to support and agree with it. And
 though there be a greater number and weight of instances to
 be found on the other side, yet these it either neglects and
 despises, or else by some distinction sets aside and rejects, in
 order that by this great and pernicious predetermination the

 authority of its former conclusion may remain inviolate.
 Francis Bacon'

 I. INTRODUCTION

 How do people form beliefs in situations of uncertainty?
 Economists have traditionally assumed that people begin with

 subjective beliefs over the different possible states of the world
 and use Bayes' Rule to update those beliefs. This elegant and
 powerful model of economic agents as Bayesian statisticians is the
 foundation of modern information economics.

 Yet a large and growing body of psychological research

 * We thank Jimmy Chan, Erik Eyster, Bruce Hsu, Clara Wang, and especially
 Steven Blatt for research assistance. We thank Linda Babcock, Steven Blatt, Jon
 Elster, Jeffrey Ely, Roger Lagunoff, George Loewenstein, and seminar participants
 at the University of California at Berkeley, Carnegie-Mellon University, Cornell
 University, Emory University, the University of Michigan, Northwestern Univer-
 sity, the 1997 meetings of the Econometrics Society, and the 1997 meetings of the
 European Economic Association, as well as three referees, for helpful comments.
 For financial support, Rabin thanks the Alfred P. Sloan and Russell Sage
 Foundations, and Schrag thanks the University Research Committee of Emory
 University. This draft was completed while Rabin was a Fellow at the Center for
 Advanced Studies in the Behavioral Sciences, supported by NSF Grant #SBR-
 960123.

 1. From The New Organon and Related Writings [1960; 1620], quoted in
 Nisbett and Ross [1980, p. 167].

 ? 1999 by the President and Fellows of Harvard College and the Massachusetts Institute of
 Technology.

 The Quarterly Journal of Economics, February 1999
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 suggests that the way people process information often departs
 systematically from Bayesian updating. In this paper we formally
 model and explore the consequences of one particular departure
 from Bayesian rationality: confirmatory bias. A person suffers

 from confirmatory bias if he tends to misinterpret ambiguous

 evidence as confirming his current hypotheses about the world.
 Teachers misread performance of pupils as supporting their
 initial impressions of those pupils; many people misread their

 observations of individual behavior as supporting their prior
 stereotypes about groups to which these individuals belong;
 scientists biasedly interpret data as supporting their hypotheses.

 Our simple model by and large confirms an intuition common
 in the psychology literature: confirmatory bias leads to overconfi-
 dence, in the sense that people on average believe more strongly
 than they should in their favored hypotheses. The model also
 yields surprising further results. An agent who suffers from

 confirmatory bias may come to believe in a hypothesis that is
 probably wrong, meaning that a Bayesian observer who was

 aware of the agent's confirmatory bias would, after observing the
 agent's beliefs, favor a different hypothesis than the agent. We
 also show that even an infinite amount of information does not
 necessarily overcome the effects of confirmatory bias: over time an

 agent may with positive probability come to believe with near
 certainty in the wrong hypothesis.

 In Section II-which readers impatient for math may wish to
 skip-we review some of the psychological evidence that humans
 are prone to confirmatory bias. In Section III we present our
 formal model and provide examples and general propositions
 illustrating the implications of confirmatory bias. In our model, an

 agent initially believes that each of two possible states of the
 world is equally likely. The agent then receives a series of
 independent and identically distributed signals that are corre-
 lated with the true state. To model confirmatory bias, we assume

 that when the agent gets a signal that is counter to the hypothesis
 he currently believes is more likely, there is a positive probability

 that he misreads that signal as supporting his current hypothesis.
 The agent is unaware that he is misreading evidence in this way
 and engages in Bayesian updating that would be fully rational
 given his environment if he were not misreading evidence.2

 2. Researchers have, of course, documented many other biases in information
 processing. We develop a model ignoring these other biases, assuming complete
 rationality except for this one bias, so as to keep our model tractable and because
 we feel that incorporating documented biases into the Bayesian model one at a
 time is useful for carefully identifying the effects of each particular bias.
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 Because we assume that the agent always correctly interprets

 evidence that confirms his current beliefs, relative to proper

 Bayesian updating he is biased toward confirming his current

 hypothesis.

 So, for example, a teacher may believe either that Marta is
 smarter than Bart or that Bart is smarter than Marta; he initially
 believes each is equally likely, and over time he collects a series of
 signals that help him to identify who is smarter. If, after receiving

 one or more signals, the teacher believes that Marta is probably
 smarter than Bart, confirmatory bias may lead him to erroneously
 interpret his next signal as supporting this hypothesis. Therefore,

 the teacher's updated belief that Marta is smarter than Bart may
 be stronger than is warranted.

 The notion that the teacher is likely to believe "too strongly"

 that Marta is smarter corresponds to the commonly held intuition

 that confirmatory bias leads to overconfidence. While qualifying
 this intuition with several caveats, our model by and large
 confirms it: given any probabilistic assessment by an agent that
 one of the hypotheses is probably true, the appropriate beliefs
 should on average deem it less likely to be true. Intuitively, a
 person who believes strongly in a hypothesis is likely to have
 misinterpreted some signals that conflict with what he believes,

 and hence is likely to have received more evidence against his
 believed hypothesis than he realizes.

 Our analysis shows that a more surprising result arises when
 confirmatory bias is severe: a Bayesian observer with no direct
 information of her own, but who can observe the agent's belief in

 favor of one hypothesis, may herself believe that the other
 hypothesis is more likely. We show that such "wrongness" can

 arise when the agent's evidence is sufficiently mixed. Intuitively, if
 the agent has perceived almost as much evidence against his
 hypothesis as supporting it, then, since some of the evidence he

 perceives as supportive is actually not supportive, it is likely that
 a majority of the real signals oppose his hypothesis. Because such
 wrongness only arises when the agent has relatively weak evi-
 dence supporting his favored hypothesis, however, the agent on
 average correctly judges which of the two hypotheses is more
 likely, in the sense that his best guess is right most of the time.

 While seemingly straightforward, the intuition for our over-
 confidence and wrongness results conceals some subtle implica-
 tions of the agent's confirmatory bias. For example, an agent who
 currently believes in Hypothesis A (say) may once have believed in
 Hypothesis B, at which time he had a propensity to misread as
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 supporting Hypothesis B evidence actually in favor of Hypothesis

 A. But then the agent may underestimate how many signals

 supporting Hypothesis A he has received, and thus he may be

 underconfident in his belief in favor of Hypothesis A. Indeed, we

 show that an agent who has only recently come to believe in a

 hypothesis is likely to be underconfident in that hypothesis,

 because until recently he has been biased against his current
 hypothesis. If a teacher used to think Bart was smarter than

 Marta and only recently concluded that Marta is smarter, then

 probably he has been ignoring evidence all along that Marta is

 smarter. The simple overconfidence and wrongness results hold

 because an agent has probably believed in his currently held
 hypothesis during most of the time he has been receiving informa-

 tion and so, on average, has been biased toward this hypothesis.

 In Section IV we investigate the implications of confirmatory

 bias after the agent receives an infinite sequence of signals. In the
 absence of confirmatory bias, an agent will always come to believe
 with near certainty in the correct hypothesis if he receives an
 infinite sequence of signals. If the confirmatory bias is sufficiently

 severe or the strength of individual signals is weak, however, then

 with positive probability the agent may come to believe with near
 certainty that the incorrect hypothesis is true. Intuitively, once
 the agent comes to believe in an incorrect hypothesis, the confirma-

 tory bias inhibits his ability to overturn his erroneous beliefs. If

 the bias is strong enough, the expected drift once the agent comes

 to believe in the false hypothesis is toward believing more strongly
 in that hypothesis, guaranteeing a positive probability that the

 agent ends up forever believing very strongly in the false hy-
 pothesis. The results of Section IV belie the common intuition that
 learning will eventually correct cognitive biases. While this is true
 for sufficiently mild confirmatory bias, when the bias is suffi-
 ciently severe "learning" can exacerbate the bias.

 The premise of this paper is that explicit formalizations of
 departures from Bayesian information processing are crucial to
 incorporating psychological biases into economic analysis. For the
 most part, we do not in this paper take the important next step of

 developing extended economic applications of the bias we model.
 In Section V, however, we illustrate one implication of confirma-

 tory bias by sketching a simple principal-agent model. We illus-
 trate how a principal may wish to mute the incentives that she
 offers an agent who suffers from confirmatory bias. Indeed, we
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 show that even if it is very easy for an agent to gather information,
 so that a principal can at negligible costs provide incentives for an
 agent to search for profitable investment opportunities, the
 principal may choose not to provide these incentives to a confirma-
 tory agent. This arises when the expected costs in terms of an
 overconfident agent investing too much in risky projects outweigh
 the expected benefit of the agent being better informed. We
 conclude in Section VI by discussing some other potential eco-
 nomic implications of confirmatory bias, as well as highlighting
 some likely obstacles to applying our model.

 II. A REVIEW OF THE PSYCHOLOGY LITERATURE

 Many different strands of psychological research yield evi-

 dence on phenomena that we are modeling under the rubric of
 confirmatory bias. Before reviewing this literature, we first wish
 to distinguish a form of "quasi-Bayesian" information processing
 from the bias we are examining. Although the two phenomena are
 related-and not always distinguished clearly in the psychology
 literature-they differ importantly in their implications for deci-
 sion theory. Suppose that, once they form a strong hypothesis,
 people simply stop being attentive to relevant new information
 that contradicts or supports their hypotheses. Intuitively, when
 you become convinced that one investment strategy is more
 lucrative than another, you may simply stop paying attention to
 even freely available additional information.3

 Bruner and Potter [1964] elegantly demonstrate such anchor-
 ing. About 90 subjects were shown blurred pictures that were
 gradually brought into sharper focus. Different subjects began
 viewing the pictures at different points in the focusing process,
 but the pace of the focusing process and final degree of focus were
 identical for all subjects. Strikingly, of those subjects who began
 their viewing at a severe-blur stage, less than a quarter eventu-
 ally identified the pictures correctly, whereas over half of those
 who began viewing at a light-blur stage were able to correctly
 identify the pictures. Bruner and Potter [p. 424] conclude that
 "Interference may be accounted for partly by the difficulty of
 rejecting incorrect hypotheses based on substandard cues." That

 3. Such behavior corresponds to a natural economic "cognitive-search" model:
 if we posit a cost to information processing, in many settings the natural stopping
 rule would be to process information until beliefs are sufficiently strong in one
 direction or another, and then stop.
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 is, people who use weak evidence to form initial hypotheses have

 difficulty correctly interpreting subsequent, better information
 that contradicts those initial hypotheses.4

 This form of anchoring does not necessarily imply that people
 misinterpret additional evidence to either disconfirm or confirm
 initial hypotheses, only that they ignore additional evidence. Such

 a tendency to anchor on initial hypotheses can therefore be
 reconciled with Bayesian information processing. While such

 anchoring is potentially quite important, psychological evidence
 reveals a stronger and more provocative phenomenon: people tend

 to misread evidence as additional support for initial hypotheses. If

 a teacher initially believes that one student is smarter than

 another, she has the propensity to confirm that hypothesis when
 interpreting later performance.5 Lord, Ross, and Lepper [1979, p.

 2099] posited some of the underlying cognitive mechanisms
 involved in such propensities:

 ... there is considerable evidence that people tend to interpret subse-

 quent evidence so as to maintain their initial beliefs. The biased assimilation

 processes underlying this effect may include a propensity to remember the

 strengths of confirming evidence but the weaknesses of disconfirming
 evidence, to judge confirming evidence as relevant and reliable but disconfirm-
 ing evidence as irrelevant and unreliable, and to accept confirming evidence
 at face value while scrutinizing disconfirming evidence hypercritically. With
 confirming evidence, we suspect that both lay and professional scientists
 rapidly reduce the complexity of the information and remember only a few

 well-chosen supportive impressions. With disconfirming evidence, they con-

 tinue to reflect upon any information that suggests less damaging "alterna-
 tive interpretations." Indeed, they may even come to regard the ambiguities
 and conceptual flaws in the data opposing their hypotheses as somehow
 suggestive of the fundamental correctness of those hypotheses. Thus, com-

 4. A similar experiment [Wyatt and Campbell 1951] was cited by Perkins
 [1981] as one interpretation of the perspective that "fresh" thinkers may be better
 at seeing solutions to problems than people who have meditated at length on the
 problems, because the fresh thinkers are not overwhelmed by the "interference" of
 old hypotheses.

 5. A related arena where the confirmation bias has been studied widely is in
 counselor judgments: counselors in clinical settings tend to confirm original
 suppositions in their eventual judgments. If you are told ahead of time that an
 interviewee is combative, then both your conduct and your interpretation of his
 conduct during an interview may reinforce that supposition, even if he is in fact no
 more combative than the average person. See, e.g., Haverkamp [1993]. There has
 also been extensive research on confirmatory bias in the interviewing process more
 generally; see, e.g., Dougherty, Turban, and Callender [1994] and Macan and
 Dipboye [1994]. Research applying variants of confirmatory bias to other domains
 includes Arkes [1989] and Borum, Otto, and Golding [1993] to the law; Baumann,
 Deber, and Thompson [1991] to medicine; and Souter [1993] discusses the
 implications of overconfidence to business insurance.
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 pletely inconsistent or even random data-when "processed" in a suitably

 biased fashion-can maintain or even reinforce one's preconceptions.

 The most striking evidence for the confirmatory bias is a

 series of experiments demonstrating how providing the same
 ambiguous information to people who differ in their initial beliefs
 on some topic can move their beliefs farther apart. To illustrate
 such polarization, Lord, Ross, and Lepper [1979] asked 151
 undergraduates to complete a questionnaire that included three

 questions on capital punishment. Later, 48 of these students were
 recruited to participate in another experiment. Twenty-four of

 them were selected because their answers to the earlier question-

 naire indicated that they were" 'proponents' who favored capital

 punishment, believed it to have a deterrent effect, and thought
 most of the relevant research supported their own beliefs. Twenty-

 four were opponents who opposed capital punishment, doubted its
 deterrent effect and thought that the relevant research supported

 their views." These subjects were then asked to judge the merits of
 randomly selected studies on the deterrent efficacy of the death
 penalty, and to state whether a given study (along with criticisms
 of that study) provided evidence for or against the deterrence
 hypothesis. Subjects were then asked to rate, on 16 point scales
 ranging from - 8 to + 8, how the studies they had read moved their
 attitudes toward the death penalty, and how they had changed
 their beliefs regarding its deterrent efficacy. Lord, Ross, and
 Lepper [pp. 2102-2104] summarize the basic results (all of which
 hold with confidence p < .01) as follows:

 The relevant data provide strong support for the polarization hypothe-
 sis. Asked for their final attitudes relative to the experiment's start,
 proponents reported that they were more in favor of capital punishment,

 whereas opponents reported that they were less in favor of capital punish-
 ment.... Similar results characterized subjects' beliefs about deterrent

 efficacy. Proponents reported greater belief in the deterrent effect of capital
 punishment, whereas opponents reported less belief in this deterrent effect.

 Plous [1991] replicates the Lord-Ross-Lepper results in the
 context of judgments about the safety of nuclear technology. Pro-
 and antinuclear subjects were given identical information and
 arguments regarding the Three MVIile Island nuclear disaster and
 a case of false military alert that could have led to the launching of
 U. S. nuclear missiles. Plous [p. 1068] found that 54 percent of
 pronuclear subjects became more pronuclear from the informa-
 tion, while only 7 percent became less pronuclear. By contrast,
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 only 7 percent of the antinuclear subjects became less antinuclear
 from the information while 45 percent became more antinuclear.6

 Darley and Gross [1983] demonstrate a related and similarly

 striking form of polarization due to confirmatory bias. Seventy
 undergraduates were asked to assess a nine-year-old girl's aca-
 demic skills in several different academic areas. Before complet-
 ing this task, the students received information about the girl and
 her family and viewed a video tape of the girl playing in a
 playground. One group of subjects was given a fact sheet that

 described the girl's parents as college graduates who held white-
 collar jobs; these students viewed a video of the girl playing in
 what appeared to be a well-to-do, middle class neighborhood. The
 other group of subjects was given a fact sheet that described the
 girl's parents as high school graduates who held blue-collar jobs;

 these students viewed a video of the same girl playing in what

 appeared to be an impoverished inner-city neighborhood. Half of
 each group of subjects were then asked to evaluate the girl's
 reading level, measured in terms of equivalent grade level.7 There
 was a small difference in the two groups' estimates-those
 subjects who had viewed the "inner-city" video rated the girl's skill
 level at an average of 3.90 (i.e., 9/io through third grade) while
 those who had viewed the "suburban video" rated the girl's skill
 level at an average of 4.29. The remaining subjects in each group
 were shown a second video of the girl answering (with mixed
 success) a series of questions. Afterwards, they were asked to

 6. These percentages were derived from Table 2 of Plous [1991, p. 1068],
 aggregating across two studies; the remaining subjects in each case reported no
 change in beliefs. For other papers following on Lord, Ross, and Lepper [1979], see
 Fleming andArrowood [1979]; Jennings, Lepper, and Ross [1981]; Hubbard [1984];
 Lepper, Ross, and Lau [1986]. See also Miller, McHoskey, Bane, and Dowd [1993]
 for more mixed evidence regarding the Lord-Ross-Lepper experiment. In the
 passage above, Lord, Ross, and Lepper posit that even professional scientists are
 susceptible to such same-evidence polarization. Indeed, many economists and
 other academics have probably observed how differing schools of thought interpret
 ambiguous evidence differently. An example was once told to one of us by a
 colleague. He saw the same model-calibrating the elasticity of demand facing a
 Cournot oligopolist as a function of the number of firms in an industry-described
 at the University of Chicago and at the Massachusetts Institute of Technology. A
 Chicago economist derived the formula and said, "Look at how few firms you need
 to get close to infinite elasticities and perfect competition." An M.I.T. economist
 derived the same formula and said, "Look at how large n [the number of firms] has
 to be before you get anywhere close to an infinite elasticity and perfect competi-
 tion." These different schools each interpreted the same mathematical formula as
 evidence reinforcing their respective views. For related analysis in the scientific
 domain, see also Mahoney [1977].

 7. The subjects were also asked to evaluate the girl's mathematics and liberal
 arts skill levels; we report the results that are least supportive of the existence of
 confirmatory bias.
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 evaluate the girl's reading level. The inner-city video group rated
 the girl's skill level at an average of 3.71, significantly below the
 3.90 estimate of the inner-city subjects who did not view the
 question-answer video. Meanwhile, the suburban video group
 rated the girl's skill level at an average of 4.67, significantly above
 the 4.29 estimate of the suburban subjects who did not view the
 second video. Even though the two groups viewed the identical
 question-and-answer video, the additional information further
 polarized their assessments of the girl's skill level. Darley and
 Gross interpret this result as evidence of confirmatory bias-
 subjects were influenced by the girl's background in their initial
 judgments, but their beliefs were evidently influenced even more
 strongly by the effect their initial hypotheses had on their
 interpretation of further evidence.8

 Our reading of the psychology literature leads us to conclude
 that any of three different information-processing problems con-
 tribute to confirmatory bias. First, researchers widely recognize
 that confirmatory bias and overconfidence arise when people must
 interpret ambiguous evidence (see, e.g., Keren [1987] and Griffin
 and Tversky [1992]). Lord, Ross, and Lepper's [1979] study,
 discussed above, clearly illustrates the point. Keren [1988] notes
 the lack of confirmatory bias in visual perceptions and concludes
 that confirmatory tendency depends on some degree of abstraction
 and "discrimination" (i.e., the need for interpretation) not present
 in simple visual tasks. A primary mechanism of stereotype-
 maintenance is our tendency to interpret ambiguous behavior
 according to previous stereotype.9 Similarly, a teacher may inter-
 pret an ambiguous answer by a student as either creative or just

 plain stupid, according to his earlier impressions of the student,

 8. It should be noted that polarization of the form identified by Darley and
 Gross [1983] provides more direct evidence of confirmatory bias than does
 polarization identified by Lord, Ross, and Lepper [1979] and related papers. As Jeff
 Ely pointed out to us, Lord, Ross, and Lepper permit an alternative interpretation:
 that some people are predisposed to interpret ambiguous evidence one way and
 some the other. Hence, observing further polarization by groups who already differ
 may not reflect confirmatory bias per se, but underlying differences in interpreta-
 tion of evidence that would appear irrespective of subjects' current beliefs. While
 this interpretation also departs from common-priors Bayesian information process-
 ing and will often yield similar implications as confirmatory bias, it is conceptually
 distinct and would sometimes yield different predictions. By demonstrating
 polarization based on differing beliefs induced in two ex ante identical groups of
 subjects, Darley and Gross are not subject to this alternative interpretation.

 9. A vast literature explores the mechanisms by which people retain ethnic,
 gender, and other group stereotypes. See, e.g., Hamilton and Rose [1980];
 Bodenhausen and Wyer [1985]; Bodenhausen and Lichtenstein [1987]; Stangor
 [1988]; Stangor and Ruble [1989]; and Hamilton, Sherman, and Ruvolo [1990].
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 but will be less likely to biasedly interpret more objective feedback
 such as answers to multiple-choice questions.

 Second, confirmatory bias can arise when people must inter-
 pret statistical evidence to assess the correlation between phenom-

 ena that are separated by time. Nisbett and Ross [1980] argue
 that the inability to accurately identify such correlation (e.g.,
 between hyperactivity and sugar intake, or between performance
 on exams and the time of day the exams are held) is one of the
 most robust shortcomings in human reasoning.10 People often
 imagine a correlation between events when no such correlation

 exists."1 Jennings, Amadibile, and Ross [1982] argue that illusory
 correlation can play an important role in the confirmation of false
 hypotheses, finding that people underestimate correlation when

 they have no theory of the correlation, but exaggerate correlation
 and see it where it is not when they have a preconceived theory of
 it.12

 Third, confirmatory bias occurs when people selectively col-

 lect or scrutinize evidence. One form of "scrutiny-based" confirma-
 tory bias is what we shall call hypothesis-based filtering.13 While it
 is sensible to interpret ambiguous data according to current
 hypotheses, people tend to use the consequent "filtered" evidence

 10. As Jennings, Amabile, and Ross [1982, p. 212] put it, "even the staunchest
 defenders of the layperson's capacities as an intuitive scientist . .. have had little
 that was flattering to say about the layperson's handling of bivariate observation."

 11. Chapman and Chapman [1967, 1969, 1971] demonstrate that clinicians
 and laypeople often perceive entirely illusory correlation among (for instance)
 pictures and the personality traits of the people who drew the pictures. Stangor
 [1988] and Hamilton and Rose [1980] also discuss the role of illusory correlation in
 the context of confirmatory-like phenomena.

 12. Similarly, Redelmeier and Tversky [1996] argue illusory correlation may
 help explain the persistent belief that arthritis pain is related to the weather.

 13. Another mechanism can be defined as "positive test strategy": People tend
 to ask questions (of others, of themselves, or of data) that are likely to be true if
 their hypothesis is true-without due regard to the fact that they are likely to be
 true even if the hypothesis is false. See Einhorn and Hogarth [1978]; Klayman and
 Ha [1987]; Beattie and Baron [1988]; Devine, Hirt, and Gehrke [1990]; Hodgins
 and Zuckerman [1993]; Friedrich [1993]; and Zuckerman, Knee, Hodgins, and
 Miyake [1995]. We are using this term a bit differently than we suspect
 psychologists would use it. As far as we know, the term was coined by Klayman and
 Ha to point out that much of what was put under the rubric of confirmatory bias
 could indeed be a rational form of hypothesis testing. Fischhoff and Beyth-Marom
 [1983, pp. 255-256] and Friedrich also point out that if people are fully aware that
 asking "soft" questions teaches them little about the truth of hypotheses, then no
 bias has occurred. While we feel research on the positive test strategy needs more
 careful calibration versus Bayesian updating, we believe that the evidence
 suggests that people do not fully appreciate how little they have learned about the
 validity of their hypotheses when asking soft questions. (Mehle, Gettys, Manning,
 Baca, and Fisher [1981], for instance, show that people with specified hypotheses
 for observed data tend to overuse such hypotheses to explain the data because they
 do not have "available" the many unspecified hypothesis that could also explain the
 data.)
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 inappropriately as further evidence for these hypotheses. If a

 student gives an unclear answer to an exam question, it is
 reasonable for a teacher to be influenced in his evaluation of the

 answer by his prior perceptions of that student's mastery of the
 material. However, after assigning differential grades to students

 according to differential interpretation of comparable answers, it
 is a mistake to then use differential grades on the exam as further
 evidence of the differences in the students' abilities.14 This sort of
 error is especially likely when the complexity and ambiguity of
 evidence requires the use of prior theories when interpreting data
 and deciding what data to examine.15

 Finally, one of the main results in our model is confirmation of

 the conjecture common in the psychological literature that confir-
 matory bias leads to overconfidence. A vast body of psychological
 research, separate from research on confirmatory bias, finds that

 people are prone toward overconfidence in their judgments.16

 14. Lord, Ross, and Lepper [1979, pp. 2106-2107] note a similar distinction in
 reflecting on the bias in their experiment discussed above. They note that it is
 proper for people to differentially assess probative value of different studies
 according to their current beliefs about the merits of the death penalty. The "sin" is
 in using their hypothesis-based interpretations of the strength of different studies
 as further support for their beliefs.

 15. We suspect that hypothesis-based filtering is especially important in
 understanding persistence and strengthening of beliefs in tenuous "scientific"
 theories. Indeed, Jon Elster drew our attention to an illustration by philosopher of
 science Karl Popper [1963, pp. 34-35] of confirmatory bias in intellectual pursuits.
 Popper observed that followers of Marx, Freud, and Adler found "confirmation"
 everywhere, and described the process by which they strengthened their convic-
 tion over time in terms remarkably similar to the process as we've described it
 based on psychological research:

 Once your eyes were thus opened you saw confirming instances every-
 where: the world was full of verifications of the theory. Whatever happened
 always confirmed it . . . The most characteristic element in this situation
 seemed to me the incessant stream of confirmations . . . As for Adler, I was
 much impressed by a personal experience. Once, in 1919, I reported to him a
 case which to me did not seem particularly Adlerian, but which he found no
 difficulty in analysing in terms of his theory of inferiority feelings, although
 he had not even seen the child. Slightly shocked, I asked him how he could be
 so sure. "Because of my thousandfold experience," he replied; whereupon I
 could not help saying: "And with this new case, I suppose, your experience
 has become thousand-and-one-fold."

 What I had in mind was that his previous observations may not have
 been much sounder than this new one; that each in its turn had been
 interpreted in the light of "previous experience," and at the same time
 counted as additional confirmation.

 16. See, e.g., Oskamp [1982], Mahajan [1992], and Paese and Kinnaly [1993].
 An early paper that makes this point is Fischhoff, Slovic, and Lichtenstein [1977],
 who also tested the robustness of overconfidence with monetary stakes rather than
 reported judgments. No decrease in overconfidence was found relative to the
 no-money-stakes condition. (As Camerer [1995] notes, there exist very few
 conclusions reached by researchers on judgment that have been overturned when
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 III. CONFIRMATORY BIAs AND BELIEF FORMATION

 Consider two states of the world, x E {A,B}, where A and B are
 two exhaustive and mutually exclusive hypotheses regarding
 some issue. We consider an agent whose prior belief about x is
 given by prob (x = A) = prob (x = B) = 0.5, so the agent initially
 views the two alternative hypotheses as equally likely to be true.

 In every period t E 11,2,3, .. .1 the agent receives a signal, st E Ia,bl,
 that is correlated with the true state of the world. Signals received
 at different times t are independently and identically distributed,

 with prob (st = a1A) = prob (st = b B) = 0, for some 0 E (.5,1).
 After receiving each signal, the agent updates his belief about the
 relative likelihood of x = A and x = B.

 To model confirmatory bias, we suppose that the agent may
 misinterpret signals that conflict with his current belief about

 which hypothesis is more likely. Suppose that, given the signals
 the agent thinks he has observed in the first t - 1 periods, he
 believes that state A is more likely than state B. Because of his

 confirmatory bias, the agent may misread a conflicting signal st =
 b in the next period, believing instead that he observes st = a.

 Formally, in every period t E 11,2,3, ... .1 the agent perceives a
 signal St E {14,1. When the agent perceives a signal at = a-, he
 believes that he actually received a signal st = a, and if he
 perceives at = 1, he believes that he actually received a signal st =
 b. He updates his beliefs using Bayes' Rule given his (possibly
 erroneous) perceptions of the signals he is receiving. We assume

 that with probability q > 0 the agent misreads a signal st that
 conflicts with his belief about which hypothesis is more likely, and

 that the agent always correctly interprets signals that confirm his
 belief. If he currently believes that Hypothesis A is more likely,

 then for sure he interprets a signal st = a as at = a-, but with
 probability q he misreads st = b as at =a

 This model of confirmatory bias incorporates several unrealis-

 tic simplifying assumptions. For instance, we assume that the
 severity of the bias summarized by q does not depend on the
 strength of the agent's beliefs about which of the two states is
 more likely. It would be reasonable to expect that q is greater if the

 monetary stakes are added.) There have, however, been criticisms of the evidence
 in support of overconfidence. See Bjorkman [1994]; Pfeifer [1994]; Tomassini,
 Solomon, Romney, and Krogstad [1982]; Van Lenthe [1993]; and Winman and
 Juslin [1993]. We feel, nevertheless, that the evidence makes a strong case for
 overconfidence. Indeed, see Soll [1996] for evidence that overconfidence does
 extend to ecologically valid domains.
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 agent's beliefs are more extreme. We conjecture that our qualita-

 tive results would continue to hold if we were to relax this

 assumption. Also, we assume that the agent misreads conflicting

 evidence as confirming evidence. While we feel that this is often

 the case, a reasonable alternative model would be to assume

 instead that the agent merely has a tendency to overlook evidence

 that conflicts with his beliefs. This model, too, would yield the

 same qualitative results as our model; intuitively, ignoring the

 counterhypothesis evidence in a cluster of mixed, but mostly

 counterhypothesis evidence, is equivalent to misreading the whole

 cluster as hypothesis-supportive.

 The presence of confirmatory bias means that the agent's

 perceived signals Ut are neither independently nor identically

 distributed. Suppose that, after receiving signals st-1 = (si, . ., st-i)
 the agent has perceived a sequence of signals Ut-i = (a,, . . ., St-)
 and holds beliefs prob (x = A Ut-i). Define

 0* =prob (at = c-1prob (x AlUt-i) > 0.5, x = B)

 = prob (at = prob (x = BIUt-i) > 0.5, x = A).

 0 = prob (at = a I prob (x =A I t-') > 0.5, x = A)

 = prob (at = Pprob (x = BlUt-i) > 0.5, x= B).

 0* and 0** summarize the distribution of the agent's per-

 ceived signal Ut when the agent believes that one hypothesis is

 more likely than the other; i.e., when prob (x = AI t-i) =# 0.5. 0* is
 the- probability that the agent perceives a signal confirming his

 belief that one hypothesis is more likely when in fact the other

 hypothesis is true. 0** is the probability that the agent perceives a

 signal confirming his belief that a hypothesis is more likely when
 in fact it is true. Because with probability q the agent misreads a

 signal that conflicts with his beliefs, 0* = (1 - 0) + qO and 0** =

 0 + q(1 - 0). When prob (x = AlUt-1) = 0.5, i.e., when the agent
 believes that the two possible hypotheses are equally likely, the
 agent does not suffer from confirmatory bias. In this case, he

 correctly perceives the signal that he receives, and he updates
 accurately, so 0 prob (at = a-Iprob (x = AISt-l) = 0.5,x = A) =

 prob (at = P3prob (x = BlUt-i) = 0.5,x = B).
 If q = 0, then the agent is an unbiased Bayesian statistician;

 while if q = 1, the agent's first piece of information completely
 determines his final belief, since he always misreads signals that
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 conflict with the first signal he receives. More generally, the
 higher is q, the more extreme is the confirmatory bias.

 Suppose that the agent has perceived n, ct signals and np 3
 signals, where n, > new. Because the agent believes he has received
 n, a signals and ne b signals, his updated posterior beliefs are
 given by

 prob (x = AI na no) = no-np + (1- opot-np

 Define

 prob (x = AI ns,, ne)

 A(nan~) = prob (x = B I napno)

 A(n~,,np) represents the agent's beliefs in terms of a relative
 likelihood ratio. Using Bayes' Rule, A(n,,np) = (On,-np)/(1 - O)ot -no. If
 A(n,,np) > 1, the agent believes that A is more likely than B to be
 the true state; while if A(n,,np) < 1, the agent believes that B is
 more likely than A. If A(n,,np) = 1, the agent believes that the two
 states are equally likely. The agent's interpretation of an addi-

 tional signal is biased whenever A(n,, np) =# 1.
 In order to identify the effects of confirmatory bias, it is

 helpful to compare the agent's beliefs with the beliefs of a

 hypothetical unbiased, Bayesian observer who learns how many ac
 and a signals the agent has perceived, and who knows that the
 agent suffers from confirmatory bias. Like the agent, the Bayesian
 observer initially believes that prob (x = A) = prob (x = B) = 0.5,
 and she has no independent information about whether x = A or

 x = B. This hypothetical observer's beliefs, therefore, reflect the
 true probability that x = A and x = B, given the signals that the
 agent has perceived.

 Define A*(no,,np) as the Bayesian observer's likelihood ratio of
 A versus B when she knows that an agent who suffers from

 confirmation bias has perceived n, ct signals and ne J signals,
 where n.. > n,. In general, when q > 0, the biased agent's
 likelihood ratio A(no,,np) and the unbiased observer's likelihood
 ratio A*(n,,np) are not equal. If A(n,,np) when n.. > ne, the agent is
 overconfident; his belief in favor of the hypothesis that x = A is
 stronger than is justified by the available evidence. Similarly, if

 A(n,,np) < A*(n,,np), the agent is underconfident in his belief that
 x =A.
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 In the formal results that we develop below, we assume that,

 while the unbiased observer knows how many ac and a signals the

 agent has perceived, she does not know the order in which the

 agent perceived his signals. But when q > 0, the order of the

 agent's perceived signals, if known, would influence a Bayesian

 observer's beliefs, since the agent's confirmatory bias implies that

 his perceived signals are not distributed independently. Suppose

 that the agent has perceived three ac signals and two a signals, in

 which case his beliefs are A(n, = 3,np = 2) = 0/(1 - 0). If the
 Bayesian observer knew the order of the agent's signals, her

 posterior belief A*(n, = 3, ne = 2) could be less than, greater than,
 or equal to 0/(1 - 0), depending on the order of the signals. Thus,

 from the perspective of an outside observer, the agent could be

 overconfident, underconfident, or perfectly calibrated in his beliefs.

 Suppose, for example, that the Bayesian observer knew that

 the agent's sequence of perceived signals was (aaaj3,). In this

 case the observer's posterior likelihood ratio is

 0(0 + q(1 - 0))2(1 - 0)2
 A* =

 (1 - 0)(1 - 0 + q0)202

 (0 + q(1 - 0))2(1 - 0) 0

 - (1 - 0 + q 0)2 0 < 1 _ 0, ~Vq E (0,1].

 Intuitively, the Bayesian observer recognizes the possibility

 that the agent may have misread his second and third signals,

 perceiving that they supported the hypothesis that x = A when in
 fact one or both may have supported the hypothesis that x = B.
 Therefore, the Bayesian observer is less convinced that x = A than

 the agent, who is overconfident in his belief. More generally, an
 observer who knows that a biased agent has always believed in his

 current hypothesis should judge the agent to be overconfident in
 his belief, since there is a positive probability that the agent has

 misread signals that are counter to his favored hypothesis. An

 observer who knows that a teacher has always believed that Bart

 is smarter than Marta should recognize that the teacher's confir-
 matory bias may have led him to misread evidence that Marta is

 in fact smarter.

 Alternatively, suppose that the Bayesian observer knew that

 the agent's sequence of perceived signals was ( Now the
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 observer's posterior likelihood ratio is

 (1 - 0)(1 - 0 + q0)03

 0(0 + q(1 - 0))(1- 0)3

 (1 - 0 + q0)02 0

 (0 + q(1 - 0))(1 - 0)2 1_0' VqE(

 In this case, the Bayesian observer believes that the agent
 may have misread his second signal, perceiving that it supported

 the hypothesis that x = B when in fact it may have supported the
 hypothesis that x = A. Thus, the Bayesian observer believes that

 there is a greater likelihood that x = A than the agent, who is

 underconfident in his belief. More generally, an observer who
 knows that a biased agent only recently came to believe in his
 current hypothesis after long believing in the opposite hypothesis
 should judge the agent to be underconfident in his belief, since the
 agent may have misread one or more signals that support his
 current hypothesis when he believed the opposite. An observer
 who knows that a teacher initially thought that Bart was smarter
 than Marta, but eventually started to believe that it was slightly
 more likely that Marta was smarter than Bart, should conjecture
 that the teacher is underconfident about his new hypothesis.
 When the teacher believed that Bart was smarter than Marta, he
 may have misinterpreted signals that Marta was smarter. The
 fact that the teacher came to believe that Marta was smarter
 despite his initial bias toward believing that Bart was smarter
 indicates that the evidence is very strong that Marta is smarter. 17

 The preceding examples illustrate how information about the

 order of the agent's signals would significantly influence an

 17. As a discussant for this paper, Roger Lagunoff made an interesting
 suggestion that is especially relevant for the examples we are discussing here. In
 our model, once the agent interprets a signal, he never goes back and reinterprets
 it-even if he later changes his hypothesis about the world. Hence we are not
 capturing a form of belief updating we sometimes observe: when somebody (finally)
 comes around to change his world-view that he held for quite a while, he
 sometimes experiences an epiphany whereby he goes back and reinterprets
 previous evidence in light of his new hypothesis, realizing that "the signs were
 there all along." This suggests a model in which an agent is biased in interpreting
 not just the next signal, but all past signals, as supporting his current hypothesis
 about the world. While we suspect there is some truth to this, we don't believe that
 people fully retroactively rebias themselves in this way. (We have found no
 psychological evidence about this one way or another.) While such an alternative
 model would rule out the possibility of "underconfidence" for recent converts, it
 would leave all the predictions regarding overconfidence discussed in the remain-
 der of the paper qualitatively the same, and magnify the magnitude of our results
 (and simplify the proofs).
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 outside observer's judgment about whether, and in what direction,

 the agent's beliefs were biased. Nevertheless, for the remainder of
 the paper we assume that an outside observer only knows the
 number of aO and a signals that the agent has received, and not the
 order in which he received them. This assumption enables us to
 identify whether, on average, the agent is over- or underconfident.
 This appears to be the question that the psychological literature

 addresses; presumably, it is also of interest to economists.

 Clearly, if q = 0, then A*(n,,np) = A(n,,np). When q > 0,
 however, Proposition 1 establishes that A*(n,,np) < A(n,,np). That
 is, when the agent perceives that a majority of his signals support

 (say) Hypothesis A, he believes in A with higher probability than
 is warranted.18

 PROPOSITION 1. Suppose that n, > ni and n, + ni > 1. Then
 A*(n,,,np) < A(ny,np,).
 Proposition 1 establishes that an agent who suffers from

 confirmatory bias will be overconfident in his belief about which
 state is most likely.

 An observer who knows the agent's beliefs cannot usually
 observe the exact sequence of the agent's perceived signals.
 Therefore, the observer's judgment about whether the agent is
 under- or overconfident depends on her belief regarding the
 likelihood of the different possible sequences of signals. Proposi-
 tion 1 establishes that overconfidence is the dominant force. The
 intuition for this result is fairly straightforward: if you cannot
 directly observe the agent's past beliefs, but you know that he now
 believes in Hypothesis A, you should surmise that, on average, he
 spent more time in the past believing Hypothesis A than Hy-
 pothesis B. Consequently, you should surmise that, on average,
 the agent misread more signals while believing in Hypothesis
 A - contributing to overconfidence - than he misread while believ-
 ing in Hypothesis B-contributing to underconfidence. Proposi-

 tion 1 hinges to some extent on our assumption that the agent
 receives signals that are the same strength in every period. We
 believe that (far more complicated) versions of Proposition 1 hold
 in more general models, but we show in Appendix 1 that undercon-

 fidence is sometimes possible when the agent's signals are of
 different strengths in different periods.

 18. All proofs are in Appendix 2. Because our model is entirely symmetric, we
 shall for convenience present all results and much of our discussion solely for the
 case where A is perceived as more likely.
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 Proposition 1 shows that when the agent believes that the
 state is x = A with probability j > 0.5, the true probability that
 the state is x = A is less than A. Interestingly, the true probability
 that A is the true state may be less than 0.5, meaning that B is
 more likely than A. The possibility that the agent may suffer not
 merely from overconfidence, but also from "wrongness," arises
 when the agent's confirmatory bias is severe and he has perceived
 at least two signals in favor of each hypothesis.

 To see the intuition for this result, suppose that the agent has

 since his first signal s, = a believed that Hypothesis A is more
 likely than B, but that he nevertheless has perceived two signals
 at = at = 13 at two times t, t' > 1. If the agent's confirmatory bias is

 severe (i.e., q 1), only his first perceived signal in favor of A
 provides true evidence that x = A. Once the agent believes that A
 is true, his confirmatory bias predisposes him to perceive that

 subsequent signals support this belief, and, therefore, additional
 signals in favor of A are not very informative. But, because the
 agent's two perceived signals in favor of B conflict with what he
 believes-that x = A is more likely-they reflect actual signals in
 favor of B. Thus, although the agent has always believed that x =
 A is more likely, he has effectively received only one signal in favor
 of A and two signals in favor of B. In this case the agent's belief
 that x = A represents extreme overconfidence; if he had correctly
 interpreted evidence, he would believe that x = B is more likely.

 It is, of course, possible that hypothesis A is more likely than
 the agent realizes if he first perceives a signal si = b, falsely reads
 a's as b's for a while, and only later perceives enough &t's to come to
 believe in A. And it is true that getting more true a's than true b's
 implies that Hypothesis A is more likely. Yet, it can be shown that

 these possibilities may be far less likely than the cases leading to
 extreme overconfidence, so that the net effect that is more likely
 that B is true than that A is true if the agent believes in A with
 mixed evidence.

 For example, suppose that the agent has perceived seven
 signals, four &t's and three 13's. Given these signals, the agent's

 posterior beliefs are A(n, = 4,np = 3) = 0/(1 - 0) > 1; the agent
 believes that the state x = A is more likely. Meanwhile, the true

 likelihood ratio is A*(n = 4,np = 3)-=

 (1 - 0)3[804 + 8030** + 7020**2 + 500**3]

 + (1 - 0)2[030**0* + 4040*] + 204(1 - 0)0*2

 03[8(1 - 0)4 + 8(1 - 0)30* + 7(1 - 0)20*2 + 5(1 - 0)0*3]

 + 02[(1 - 0)30**0* + 4(1 - 0)40**] + 20(1 - 0)40**2
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 Suppose that 0 = .75. Then the agent's posterior likelihood ratio is

 A(4,3) = 3. Suppose further that q = .95, and therefore the agent

 suffers from severe confirmatory bias. Then, the true likelihood
 ratio is A*(4,3) = .63, and therefore x = B is more likely to be the

 true state, despite the agent having perceived more ac signals than

 a signals.
 Indeed, it turns out to be the case that when confirmatory

 bias is very severe and the signals are very informative, then
 whenever you observe the agent believing in Hypothesis A and
 having perceived two or more a signals, then you should assume

 that it is more likely that B is true than A. We formalize this in

 Proposition 2. Let A*(n,,n Iq,0) be the appropriate beliefs as a
 function of q and 0. Then

 PROPOSITION 2. For no, > n p and np -< 1, lime,0 A*(no,,np I - E,
 1 - e) > 1. For all no, > np, >- 2, limb-o A*(not,np I 1- E1 - e) < 1.

 That is, for 0 and q both very close to 1, when the agent has
 perceived one or fewer 13 signals and believes in Hypothesis A, she
 is probably correct (though overconfident) in her beliefs; when the

 agent has perceived two or more 3 signals and believes in
 Hypothesis A, she is probably incorrect in her beliefs-Hypothesis
 B is more likely to be true.

 We emphasize that the very premise of the proposition means
 that the situations to which it applies are uncommon; when both q
 and 0 are close to 1, the probability of perceiving anything besides
 a sequence of signals favoring the correct hypothesis is small.
 Therefore, Proposition 2 tells us about a very low-probability

 event. In our example with seven signals, q = .95, and 0 = .75, the
 probability that the signals are sufficiently mixed that the agent is
 probably wrong is a little more than one-half percent.

 While we do not know more generally the highest probability
 with which the agent can be wrong, some calibrations illustrate
 that it can be relatively likely that the agent ends up with beliefs
 that a Bayesian observer would deem probably wrong. Tables
 I-IV display, for various values of n, 0, and q, the probability that

 A* < q and A > 1 or A* > 1/q and A < 1, where q represents
 different thresholds for how wrong the agent is. Table entries are
 in percentage terms (rounded to the nearest percent), with rows

 corresponding to different values of q and columns to different
 values of 0. (Dashes indicate an entry exactly equal to zero.)19

 For instance, with 0 = .6 and q = .5, the probability that the

 19. The entries in Tables I-IV reflect direct calculations (performed by
 computer) of the probabilities in question.
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 TABLE I

 PROBABILITY OF "WRONGNESS," n = 50, a = 1

 0

 q 0.6 0.7 0.7 0.9

 .1 - - - -

 .2 12 2 0 -

 .3 21 9 1 0

 .4 29 15 5 1

 .5 27 18 10 3

 .6 33 22 12 5

 .7 27 21 15 7

 .8 33 24 15 8

 .9 21 17 12 9

 TABLE II

 PROBABILITY OF "WRONGNESS," n = 50, a2 = 12

 0

 q 0.6 0.7 0.7 0.9

 .1 - _ _ _

 .2 - - _ _

 .3 10 5 1 -

 .4 15 13 5 1

 .5 19 18 9 3

 .6 16 18 12 5

 .7 18 21 13 7

 .8 11 16 15 7

 .9 4 8 12 6

 TABLE III

 PROBABILITY OF "WRONGNESS," n = 50, a = 1/9

 0

 q 0.6 0.7 0.7 0.9

 .1----

 .2----

 .3----

 .4 - 5

 .5 3 12 7 1

 .6 3 14 11 4

 .7 2 11 12 6

 .8 1 6 12 7

 .9 0 4 7 6
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 TABLE IV

 PROBABILITY OF "WRONGNESS," n = 7, q = 1

 0

 q 0.6 0.7 0.7 0.9

 .1 - - _ _

 .2 - - _ _

 .3 - _ _ _

 .4 - _ _ _

 .5 - - 2

 .6 - 5 3 1

 .7 3 3 2 5

 .8 10 8 6 3

 .9 3 2 2 1

 agent has beliefs after 50 signals that the observer would deem
 probably wrong is about 27 percent. The probability in this same

 case that his beliefs will lead the observer to believe in the other
 hypothesis with at least probability 2/3 is 19 percent, and the

 probability that the observer would believe in the hypothesis

 opposite to the agent's with at least 9/10 probability is about 3
 percent.20

 In the example above and in Proposition 2, the agent can be

 wrong in her beliefs. Even more surprising, perhaps, the true
 probability that A is the correct hypothesis need not be monotoni-

 cally increasing in the proportion of a signals the agent perceives.
 Continue to assume that the agent has received seven signals, but
 now suppose that five support x = A and two support x = B. Then,

 because 0 = .75, the agent's posterior likelihood ratio is A(5,2) =
 27 > A(4,3). Meanwhile, the true likelihood ratio is

 A*(n = 5,np = 2)

 (1 - O)2[7020**3 + 900**4 + 4030**2] + (1 - 0)030**20*

 02[7(1 - 0)20*3 + 9(1 - 0)0*4 + 4(1 - 0)30*2] + 0(1 - 0)30*20**

 20. Readers may note that these probabilities generally increase in q and
 then decrease, with probability about 0 for q = 0 and q = 1. But they are not
 single-peaked in q. This is because there are two factors at work in determining the
 influence of q on the probability. As q increases, the probability that the agent will
 end up with close-to-even mixes of ox and f signals decreases continuously. But
 because an increase in q increases the likelihood that any given combination of a's
 and P3's involves the agent being probabilistically wrong, there will be at certain
 points discrete jumps upward in the likelihood of wrongness for some values of q.
 The result is an extremely poorly behaved function.
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 Maintaining the assumption that q = .95, A*(5,2) = .62 <

 A*(4,3) = .63. Therefore, the relative likelihood that the true state

 is x = A versus x = B is smaller if the agent perceives that five out

 of seven signals support x = A than if he perceives that only four

 out of seven signals support x = A.

 While seemingly counterintuitive, this result reflects the fact

 that the agent is more likely to have perceived (truly informative)

 signals uj = f that conflict with a belief that x = A when he has
 perceived only two signals in favor of B than when he has

 perceived three signals in favor of B. Intuitively, the agent is more

 likely to have believed for many periods that x = A in the former

 case than in the latter case. Put differently, the agent is less likely

 to have perceived (truly informative) signals uj = a that conflict
 with a belief that x = B when he has perceived only two signals in

 favor of B than when he has perceived three signals in favor of B.

 The preceding examples illustrate that an agent who suffers

 from confirmatory bias may believe that one of the two possible

 states is more likely than the other when in fact the reverse is

 true. Nevertheless, Proposition 3 shows that a Bayesian observer

 who knows only that a biased agent believes that x = A is more

 likely than x = B will herself believe that x = A is more likely.

 Therefore, an agent who suffers from confirmatory bias will "on

 average" correctly judge which of the two possible states is more

 likely, though, as Proposition 1 establishes, he will always be
 overconfident in his belief.

 Define A*(n) as the likelihood ratio of a Bayesian observer
 who knows that a confirmatory agent has perceived a total of n
 signals, and knows that n, > n,, but does not know the exact

 values of nc, and np. That is, the observer knows only that the
 agent believes A is more likely than B, but observes nothing about
 the strength of his beliefs. Then

 PROPOSITION 3. For all n, A*(n) > 1.

 In light of the above examples where the agent may be wrong,

 the simple generality of Proposition 3 may seem surprising. It is
 reconciled with the examples by observing that the agent suffers

 from "wrongness" only when his confirmatory bias is very severe,

 meaning that q is close to 1, and yet he has perceived mixed
 signals about which state is more likely. But the agent is unlikely
 to receive mixed signals when his confirmatory bias is strong,

 because each signal ut will tend to mirror 01.
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 IV. BELIEFS AFTER AN INFINITE NUMBER OF SIGNALS

 A fully Bayesian agent-for whom q = 0-will after an

 infinite number of signals come to believe with near certainty in

 the correct hypothesis. We now investigate the implications of

 confirmatory bias in the limit as an agent receives an infinite
 number of signals.

 We begin with definitions and a lemma that will help to
 analyze this question. Suppose that the agent has thus far

 received m = nc, - n, > 0 more perceived signals in support of
 Hypothesis A than in support of Hypothesis B. Suppose further

 that, as long as nc, > n,, prob (ut = &) = y. Note that y = 0* if B is
 true, and y = 0** if A is true. We wish to consider some
 preliminary results that hold in either case. We define p(m,y) as
 the probability that there exists some time in the future when the
 agent will have received an equal number of a and ,( signals. (At
 that time the agent's posterior belief is the same as his prior belief,
 prob (x = A) = 0.5.) We have the following lemma, which is a
 restatement of a well-known result from Feller [1968, pp. 344-

 347).

 LEMMA 1. For all m > 0, y:- 0.5,p(m,y) = [(1 - y)/y]m. Fory ? 0.5,
 p(m,y) = 1.

 We define Pw as the probability that the agent, beginning
 with the prior belief prob (x = A) = 0.5, comes to believe with

 certainty in the wrong hypothesis after receiving an infinite
 number of signals.21 That is, Pw is the probability that, although
 the, true state is x = A, the agent instead comes to believe
 irreversibly, with near certainty, that x = B. Proposition 4

 characterizes Pw as a function of q and 0.

 PROPOSITION 4. If q > 1 - 1/(20), then

 (1 - 0) (1 - (1 - 0*)/0*)

 W (1I-(1-) * ((1 - 0*)/0*) - 0((1 - 0**)/O**)) >0.

 If q c 1 - 1/(20), thenPw = 0.

 When q > 1 - 1/(20), 0* = (1 - 0) + qO > 0.5. When 0* > 0.5,
 then once the agent comes to believe that the wrong hypothesis
 about x is more likely, he is consequently more likely to receive a

 21. Formally,Pw- prob (Vk > 0 andVE > 0, in* such that prob (now - np > k
 for all n > n*) > 1 - E).
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 TABLE V

 PROBABILITY OF BELIEVING IN WRONG HYPOTHESIS AFTER OBSERVING AN INFINITE

 NUMBER OF SIGNALS

 q 0=.6 0=.667 0=.75 0=.9

 .25 18 - - -

 .333 26 12 - -

 .5 34 24 13 2

 .75 38 31 22 8

 signal ut that confirms this incorrect belief than he is to receive a

 signal that conflicts with this incorrect belief. This guarantees
 that there is a positive probability that the agent will never
 overturn his incorrect hypothesis, and in fact come to believe more
 and more strongly in that wrong hypothesis. Conversely, if q < 1 -

 1/(20), then 0* < .5, which guarantees that the agent will, every
 time he comes to believe the wrong hypothesis is more likely,
 eventually come to abandon that belief. This in turn implies that
 the agent will repeatedly come to believe the correct hypothesis is
 more likely; and since 0** = 0 + q(1 - 0) > 0 > .5, he will
 eventually come to believe in it with near certainty.

 The proposition shows that, despite receiving an infinite
 number of signals, the agent may become certain that the
 incorrect hypothesis is in fact true.22 This occurs when the agent's
 confirmatory bias is sufficiently severe. To illustrate the magni-
 tude of Pw, Table V displays Pw for various values of 0 and q. Table
 entries are in percentage terms (rounded to the nearest percent),
 with rows corresponding to different values of q and columns to
 different values of 0. (Dashes indicate an entry exactly equal to
 zero.)

 For example, suppose that q = 0.5 and 0 = .75. Then Pw =7/52
 meaning that approximately 13 percent of the time the agent will
 eventually come to believe with certainty in the wrong hypothesis.
 As the quality of the agent's true signal worsens he is more likely
 to believe with certainty in the wrong hypothesis. Indeed, a

 corollary to Proposition 4 is that, fixing any q > 0, limo-1/2 Pw = ?2.
 We now investigate the related question of when the agent

 will maintain an incorrect initial belief. To do so, we relax our

 22. It is straightforward to show that the agent becomes certain that the
 correct hypothesis about the state of the world is true with complementary
 probability. Therefore, after an infinite number of signals the agent will believe
 that one of the hypotheses is certainly true.
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 assumption that the agent initially believes that each state x is
 equally likely and suppose instead that the agent initially believes

 that the wrong hypothesis is more likely to be true. For example, if
 x = B is the true state of the world, then the agent initially

 believes prob (x = A) = Y > 0.5. Crucially, we assume that this
 belief arose from signals that are independent of the new signals
 that the agent receives, which are distributed as outlined above.

 Given the assumption that the signals are independently
 distributed and ignoring integer problems, these prior beliefs can
 be interpreted as if the agent has already received D more signals
 supporting the incorrect hypothesis, where

 y - OD/[0D + (1 - o)D].

 This formula implicitly defines a function D(u). The agent
 must receive D(z) more conflicting signals ut than confirming
 signals in order to reach a posterior belief that the two possible

 states of the world, A and B, are equally likely.
 We define Pw(y) as the probability that the agent, beginning

 with the prior belief y > 0.5 that the wrong hypothesis about the
 state of the world is true, comes to believe with certainty in the
 wrong hypothesis after receiving an infinite number of signals.23

 PROPOSITION 5. Choose any E> 0 and any y > 0.5. Then
 (i) For all 0 E (0.5,1), there exists q > 0 such that PW(Y) >

 1 - E.

 (ii) For all q > 0, there exists 0 > 0.5 such thatPW(u) > 1 - E.

 Proposition 5 says that an agent who begins with an arbi-

 trarily small bias in the direction of the incorrect hypothesis will
 almost surely maintain his belief in this hypothesis when either of
 two conditions is satisfied. First, and not very surprisingly, this
 will occur when the agent is subject to severe confirmatory bias.
 When q is very close to 1, then the agent almost never receives
 signals that conflict with his initial belief, and therefore it is not
 surprising that this belief is rarely overturned. Second, and
 somewhat more surprisingly, the agent almost surely maintains
 his incorrect belief provided that his true signals are very weak,

 meaning that 0 is very close to 0.5. This result does not depend on
 the level of confirmatory bias, so long as q > 0. This result means
 that if the agent receives only very weak feedback from his
 environment and is subject to any confirmatory bias, he almost

 23. Pw(O.5) = Pw.
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 never overcomes any initial beliefs that are significantly incorrect,

 and in fact comes to believe that the incorrect hypothesis is

 certainly true. While one should not overinterpret the second
 result in Proposition 5-we can question whether agents really

 pay attention to such weak feedback-the conclusion is neverthe-
 less very striking. Propositions 4 and 5 show that an infinite

 sequence of signals will not necessarily lead people to overcome

 erroneous beliefs; rather, people may simply become more and
 more confident in those erroneous beliefs.

 Table VI displays Pw(y) for various values of 0, q, and j. If 0
 and y are chosen in such a way that D(y) is an integer, and q > 1 -
 1/20, it follows from Lemma 1 that

 l 'I - 0* D(y) 'I - 0* DWy
 Pw(Y) = (I - 0[ + PW(0.5) 0[ > 0.

 Table entries are in percentage terms (rounded to the nearest

 percent), with rows corresponding to different values of q and
 columns to different values of 0 and the prior belief u. (Dashes
 indicate an entry exactly equal to zero.)

 For example, suppose that 0 = .551 and y = .6. In this case
 D(y) = 2, meaning that the agent must receive two more signals
 that conflict with rather than confirm his prior belief in order to
 believe that the states A and B are equally likely. But if q = .333,
 there is nearly an 80 percent chance that the agent will never

 overturn his incorrect prior belief. Clearly, learning does not
 necessarily lead the agent to correctly identify the true state.

 V. CONFIRMATORY BIAS IN A PRINCIPAL-AGENT MODEL

 Confirmatory bias is likely to influence economic behavior in
 many different arenas. In this section we develop a simple

 TABLE VI

 PROBABILITY OF MAINTAINING AN INCORRECT PRIOR BELIEF AFTER RECEIVING AN

 INFINITE NUMBER OF SIGNALS

 0=.6, U=.6, 0=.551, U=.6, 0=.75, U=.75, 0=.634,U=.75,

 q D(z) = 1 D(z) = 2 D(z) = 1 D(z) 2

 .25 32 67 - 24

 .33 51 79 - 56

 .5 72 92 48 85

 .75 89 99 82 98
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 illustrative model of a principal-agent relationship, a context

 where we think confirmatory bias is likely to be important. The

 premise of the model is that an agent may take inappropriate

 actions not solely because of intentional misbehavior-moral

 hazard-but also because of unintentional errors arising from

 confirmatory bias. Specifically, because an agent who suffers from
 confirmatory bias will be overconfident in his judgment about how
 likely various actions are to pay off, he may be prone to taking

 actions that are riskier and more "extreme" than is optimal for the
 principal. Such overconfidence seems to reflect the intuition

 among some researchers: at a conference one of the authors

 attended, a leading economist conjectured that bad investment

 decisions by businesses in Eastern Europe receiving bank loans

 were more often the result of overconfidence by borrowers than of
 intentions to mislead banks. Even more directly along the lines of

 our model, Wood [1989] asserts that money managers become
 more confident in their investment decisions as they gather more
 information -even when the quality of their investment decisions

 is not improved.
 A principal who is aware of an agent's confirmatory bias will

 wish to design incentives that both cause the agent to internalize
 the negative consequences of bad choices and prevent decisions

 based on good-faith overconfidence. In particular, incentives that
 lead the agent to collect a lot of information may not be optimal if
 the agent suffers from severe confirmatory bias and, hence,
 becomes more overconfident as he collects more information. The
 principal may therefore wish to mute the agent's incentives

 relative to what would be optimal in the absence of confirmatory

 bias.

 While an exhaustive analysis of the effect of confirmatory bias
 on agency relationships is beyond the scope of this paper, we now
 develop a simple illustrative model along these lines. Suppose
 that a principal hires an agent to allocate initial wealth W = 1

 between the different investments in the set I = JIAIB,'C}. The
 investment Ic is risk-free; it always yields a gross return r(Ic) = 1.
 Investments IA and IB, on the other hand, are risky; their returns

 depend on the state of nature x E IA,B}. Conditional on the state x,
 the gross returns from IA and IB are r(IAIA) = r(IBIB) = R E (1,2)
 and r(IAIB) = r(IB A) = 0. Let u( ) be the principal's Von Neumann-
 Morgenstern utility function for money. Because the principal
 may be risk-averse, we assume that u' > 0 and u" ' 0. Consistent
 with the model that we developed in the previous sections, the
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 principal and the agent cannot observe the state x, and they hold a
 common prior belief that prob (x = A) = prob (x = B) = 0.5.
 Hence, if the agent learns nothing more about the true state, the

 optimal investment is in the riskless investment Ic; if he learns
 sufficiently more -generating beliefs sufficiently different from
 .5 -he will perceive it as optimal to invest some money in one of
 the two risky investments.24

 Before choosing how to invest the principal's wealth, the
 agent has the opportunity to observe informative signals about
 the true state, although the agent's confirmatory bias may lead

 him to misinterpret these signals. We assume that the signals
 that the agent receives, and the way he perceives these signals,
 accord with the model in the previous sections.

 For both analytic ease and to highlight the role of confirma-
 tory bias, we abstract away from the usual moral-hazard con-
 cerns: we assume that the agent costlessly observes signals about
 the state x and expends no effort when making decisions on the
 principal's behalf. Under this assumption, an arbitrarily small
 incentive to identify the true state would lead the agent to observe
 an infinite number of signals, after which he would believe that he

 could identify the true state with near certainty. Furthermore, to
 abstract away from issues of optimal risk-sharing between the
 agent and the principal, we assume that the agent is (nearly)
 infinitely risk-averse. Therefore, the principal must offer the

 agent a nearly constant wage.25 Under these assumptions, the

 24. While the language and notation suggest that we are referring to
 well-defined investment portfolios (e.g., three different bonds), we mean for the
 model to apply as well to internal organizational incentives to pursue ambiguously
 defined projects. Indeed, this alternative interpretation may better fit the formal
 model in some respects. Note that it is crucial to our analysis that the agent cannot
 or does not merely report his beliefs to the principal, but rather implements a
 strategy himself based on his beliefs. If the principal knew the agent's beliefs and
 the extent of his confirmatory bias, she could form her own beliefs about the true
 state of the world and then directly choose the action that would maximize her
 expected payoff.

 25. These assumptions raise a subtle point. If the agent anticipated gathering
 an infinite number of signals, he would be willing to accept a contract that yielded
 a payoff that depended on the outcome of a risky investment, even if he were
 infinitely risk-averse. This is because the agent would anticipate being able to
 identify the true state with virtual certainty. But, if the hypothesis of the first part
 of Proposition 4 is satisfied, the agent will be overconfident in his judgment after
 observing an infinite number of signals. Therefore, such a contract would impose
 more risk on the agent-and yield a lower expected utility-than he anticipated.
 We assume here that the principal cannot exploit the agent's confirmatory bias by
 convincing him to sign a contract that yields an expected payoff that is less than
 the agent's reservation payoff. This assumption means that the principal cannot
 use the agent as a "money pump," and its empirical validity deserves investigation.
 The issue of whether to focus analysis on "efficiency contracts" rather than
 "money-pumping contracts" is a more general one that is likely to arise in
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 incentives that the principal offers to the agent affect the princi-

 pal's payoff only through their effect on the investment decision

 that the agent makes. The principal does not need to compensate
 the agent for gathering information, and she cannot transfer risk
 to the agent.

 These assumptions permit us to focus on two polar cases. In

 the first case, the principal gives the agent no incentive to collect
 information, and the agent allocates the principal's wealth with
 no information beyond his prior belief. In the second case, the
 principal gives the agent an arbitrarily small incentive to collect
 information, and the agent allocates the principal's wealth after

 observing an infinite number of signals and coming to believe with
 virtual certainty that he has identified the true state.

 Suppose first that the principal offers the agent no incentive
 to gather information. Because R < 2 and the principal's prior
 belief is prob (x = A) = 0.5, it is optimal for the principal to direct
 the agent to invest all of the principal's wealth in the risk-free
 asset Ic. Now suppose that the principal offers the agent a small
 incentive to identify the true state. For instance, suppose that the
 principal offers to pay the agent an arbitrarily small fraction of
 the principal's gross return. Because it is free for the agent to

 collect information, he would observe an infinite number of
 signals and come to believe that he could identify the true state
 with certainty. These extreme beliefs would lead the agent to
 allocate all of the principal's wealth to one of the risky assets. If,
 for example, the agent thought that A was surely the true state, he
 would allocate all of the principal's wealth to asset IA.26

 If q ? 1 - 1/(20) (i.e., if confirmatory bias is sufficiently weak),
 Proposition 4 establishes that the agent will eventually identify
 the true state with near certainty if he collects enough signals.

 Hence, under our assumption that it is costless for the agent to
 gather information and that in every state of the world one or the
 other of the "risky" investments is optimal, it would then be
 optimal for the principal to offer a contract that would lead the
 agent to collect an infinite number of signals, and the principal
 would receive a payoff u(R) > u(1).

 If q > 1 - 1/(20), on the other hand, Proposition 4 establishes

 developing formal models of incentives for boundedly rational agents. See, for
 instance, O'Donoghue and Rabin [1997], who study incentive design for agents
 who irrationally procrastinate, and who discuss various rationales for focusing on
 efficiency contracts.

 26. We assume that short-selling is impossible, so the agent could not allocate
 more than $1 to asset ox by, for instance, selling investment IC short.
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 that the agent's (completely confident) belief about the true state
 is wrong with positive probability. It can be shown that he

 correctly identifies the true state with probability

 0[2(0 + q(1 - 0)) - 1](1 - 0 + qO)

 jt(0,q) q[1 - 2(1 - q)0(1 - 0)]
 Since the agent is fully confident that he has identified the true

 state, he invests all of the principal's wealth in the risky asset he
 believes is most profitable, so the principal's payoff is j*(0,q)u(R) +

 (1 - jj*(0,q))u(O). Note that y*(O,q) is increasing in 0 and decreas-
 ing in q, meaning that the agent identifies the true state with

 higher probability when he receives more informative signals and

 lower probability when his confirmatory bias is more severe.
 The principal does not want the agent to become "informed"

 when u(1) ?- y*(0,q)u(R) + (1 - y*(0,q))u(O). Define y as satisfy-
 ing u(1) = yu(R) + (1 - jt)u(O); if the agent correctly identifies the
 true state with probability y after observing an infinite number of
 signals, the principal is just willing for the agent to become

 informed about the state x. Because y*(O,q) ? 0, the principal
 always offers the agent an incentive to become informed if 0 :- y.
 That is, if the principal prefers all her money invested in a risky
 investment based on just one signal to having all her money
 invested in the risk-free investment, she will provide incentives to
 the agent. When 0 < A, on the other hand, we have Proposition 6.

 PROPOSITION 6. Suppose that 0 < H.

 (i) There exists q* E (1 - 1/20,1] such that the principal
 does not offer the agent an incentive to become informed

 about the state x if and only if q -q.
 (ii) For any q E [0,1], there exists 0* E (0.5,j] such that the

 principal does not offer the agent an incentive to become
 informed about the state x if and only if 0 c 0*.

 When 0 < j, the principal does not want the agent to observe
 signals about the state x either if confirmatory bias is very severe
 or if the agent receives very weak signals. In either case, there is a
 strong possibility that an "informed" agent would erroneously
 identify the true state, although the agent himself would overcon-
 fidently believe that he could identify the true state with near
 certainty. If the agent's overconfidence is sufficiently severe, the
 principal prefers not to offer the agent any incentive to become
 informed, in which case the agent will invest the principal's
 wealth in the riskless asset.
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 The principal's degree of risk aversion also influences whether

 or not he wants the agent to observe signals about the state x.
 While Proposition 6 shows that there are conditions where even a
 risk-neutral principal eschews incentives for the agent, the princi-

 pal is more bothered by the overconfidence when she is more
 risk-averse, in the usual sense defined by Pratt [1964]. Indeed,
 whenever confirmatory bias is severe enough that the agent might
 be wrong even after gathering an infinite number of signals, a
 principal who is sufficiently risk-averse will prefer not to offer her

 agent any incentive to become informed. We formalize this idea in
 Proposition 7.

 PROPOSITION 7. Suppose that 0 E (0.5,1), q E (1 - 1/20,1], and u()
 is a Von Neumann-Morgenstern utility function u() satisfy-
 ingu' >0, u" 0.

 (i) Suppose that u(1) c ,u*(0,q)u(R) + (1 - ,u*(0,q))u(O).

 Then there exists a function g(O) such that g' > 0, g" c o,
 and g(u(1)) :- y*(0,q)g(u(R)) + (1 - yt*(0,q))g(u(0)).

 (ii) Suppose that u(1) - ,u*(0,q)u(R) + (1 - y*(0,q))u(O).
 Then for any function g( ) such that g' > 0, g" c 0,

 g(u(1))?- jt*(0,q)g(u(R)) + (1 - y*(0,q))g(u(O)).
 (iii) In both (i) and (ii), v( ) = g(u( )) is a Von Neumann-

 Morgenstern utility function that represents preferences

 that are globally more risk-averse than those repre-
 sented by u( ).

 Suppose that Marta, whose preferences are represented by
 u( ), wishes to give her agent the incentive to become informed
 about x. The proposition establishes that there exist preferences
 that are globally more risk-averse than Marta's under which a
 principal would prefer not to give her agent the incentive to

 become informed. Furthermore, if Marta does not wish to give her
 agent an incentive to become informed about the state x, then any
 principal who is globally more risk-averse than Marta would also

 choose not to offer incentives to an identically biased agent facing
 the same investment decision.

 The preceding analysis reflects an assumption that a biased

 agent who feels he is fully informed will invest all of the principal's
 wealth in a single risky asset. The agent will pursue such a
 strategy if, for example, the principal offers the agent a fixed share
 of the principal's gross investment return. Our analysis assumes,
 of course, that the principal cannot directly contract on decisions,
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 only on returns. But it also implicitly assumes that the principal
 cannot punish the agent for having too high an expected return. If
 she could, then she might wish for the agent to gather some
 information-and then provide incentives such that the (overcon-

 fident) agent will be afraid of making too much money for the
 principal.27 There might be a variety of reasons, of course, why

 such contracts are infeasible or undesirable. If, for example, the
 principal is uncertain about either the true value of R or the

 extent of the agent's confirmatory bias q, she may not have enough
 information to propose a contract that always leads the agent to
 invest optimally.

 Nevertheless, even in the presence of uncertainty the princi-

 pal would generally be better off if she could restrain the agent's
 ability to take an extreme action. If feasible to restrain the agent,
 the principal could propose a contract that stipulates that the
 agent cannot invest more than a fraction of her wealth in any
 single asset. Even more simply, the principal could simply give the
 agent only a portion of her wealth to invest. All of these strategies
 serve the same purpose, namely preventing an overconfident
 agent from investing too much of the principal's money in a single
 asset while still taking advantage of the information that the
 agent actually does possess.

 VI. DISCUSSION AND CONCLUSION

 We believe that confirmatory bias is important in many social
 and economic situations, and that variants of the formulation
 developed in this paper can be usefully applied in formal economic
 models. For instance, confirmatory bias is likely to matter when a

 27. From the principal's point of view, the optimal proportional allocation to a
 risky investment, a*, maximizes the objective function V(a) - 0,q)
 u(1 + (R - 1)a) + (1 - ,a*(O,q)) * (1 - a). The optimal allocation a* then satisfies
 the following necessary and sufficient condition:

 20 . a* = 1

 u*(0,q)u'(1 + (R - 1)a*)(R - 1) - (1 - jt*(o,q))u'(1 - a*) = 0, a* E [0,11

 0, a* = 0.

 The principal would like to propose a contract specifying that the agent
 receives an arbitrarily small reward when the principal's gross return is 1 +
 (R - 1)a*, no payoff when the principal's gross return is 1 - a*, and a large penalty
 for any other gross return. Such a contract would punish the agent if he chooses an
 allocation that is more extreme than the principal desires.
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 decision-maker must aggregate information from many sources.

 In a setting where several individuals (nonstrategically) transmit

 their beliefs to a principal, how should she combine these reports

 to form her own beliefs? If the principal thought that the agents

 were Bayesians, then she would be very sensitive to the strength

 of the agents' beliefs. Suppose, for instance, that the principal

 knows that all agents receive signals of strength 0 = .6. Then if

 two agents report believing Hypothesis A with probability .6 and

 one agent reports believing Hypothesis B with probability .77

 (meaning he has gotten three more b signals than a signals), the

 principal should believe in Hypothesis B with probability .6.

 What if the principal were aware that agents were subject to
 confirmatory bias? If confirmatory bias is so severe that only an

 agent's first signal is very informative, then the principal may

 wish to discount the strength of agents' beliefs and basically

 aggregate according to a "majority rules" criterion. In the example

 above, for instance, the principal should perhaps think Hypothe-

 sis A is more likely, because two of three agents believe in it. We

 think this intuition has merit, but it is complicated by the fact that

 agents who believe relatively weakly in a hypothesis may be more
 likely to be wrong than right. So, if the principal thought

 confirmatory bias were severe and were very sure that all agents

 had received lots of information, then in our example she should

 believe that all three agents have provided evidence in favor of
 Hypothesis B. Hence, she should believe more in Hypothesis B

 than she would if the agents were Bayesian.

 We suspect nonetheless that the "majority-rules intuition" is
 more valid, especially when considering realistic uncertainty by

 the principal about how many signals each agent has received. If

 she were highly uncertain about how much information each
 agent received, she would assume weak beliefs merely reflected
 that an agent got few signals. Similarly, if the principal thinks
 susceptibility to confirmatory bias is heterogeneous, she might
 infer that an agent's weak beliefs indicate merely that he is not

 susceptible to overconfidence, and count weak beliefs as much as
 strong beliefs. Indeed, she may then count them more heavily,
 since confirmation-free agents are not only less likely to be
 overconfident, they are also less likely to be wrong.

 This intuition that, when aggregating information from a
 group, it may be wise to count the number of people with given
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 beliefs rather than the strength of their convictions suggests a

 related prescription for organizational design: relative to what

 she would do with Bayesian agents, a principal may prefer to hire

 more agents to collect a given amount of information. That is,

 while the lower value of information processing by confirmatory

 agents may mean that either more or fewer should be hired than if
 they were Bayesian, fixing the total amount of information

 processing a principal wants done, with confirmatory agents she

 should prefer more people thinking than if they were fully

 rational agents.

 Imagine, for instance, that a principal allocated 1000 "sig-

 nals" among different agents, whose reports she would aggregate

 to form her own beliefs. There are various costs that might

 influence how many agents to have, or (equivalently) how many

 signals to allocate per agent, e.g., the fixed cost of hiring new

 agents and decreasing returns from each individual due to fatigue
 or the increasing opportunity cost of time. But the optimal

 number of confirmatory agents is likely to be greater than the

 optimal number of Bayesian agents. Intuitively, the value of

 allocating a signal to a confirmatory agent is less than the value of
 allocating it to a Bayesian agent, unless the confirmatory agent is
 unbiased by previous signals. For example, if the principal hires

 1000 confirmatory agents, each to report his observation of a

 single signal, then she receives all of the information contained in

 the signals. If the principal instead hires one confirmatory agent

 to report his beliefs after interpreting 1000 signals, she may get

 far less information. Both signal allocations would yield the same
 amount of information if the agents were Bayesian.

 We suspect that a similar issue plays out less abstractly in

 different aspects of the legal system. While other explanations are
 probably more important, confirmatory bias may help to explain

 some features of the American jury system, such as the bias
 toward more rather than fewer jurors and the use of a majority-
 rules criterion with no mechanism (other than jury deliberations)

 to extract the strength of all participants' convictions. Confirma-
 tory bias may also help to justify the use of multiple judges to
 reach a decision when using a single judge seems to be more
 cost-effective. Appeals, for example, are usually heard by a panel
 of judges that does not include the trial judge, and some legal
 scholars (e.g., Resnik [1982]) argue that the judge who adjudicates
 at trial should not also supervise settlement bargaining and
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 pretrial discovery, which is the process by which litigants request

 information from each other. These observers fear that the trial

 judge might learn things during pretrial activities that would

 "bias" her during the trial. The notion that the quality of the
 judge's decisions during the trial suffers if she has more informa-
 tion relevant to the case is somewhat puzzling; worries that she

 can be "biased" by more information certainly flies in the face of
 the Bayesian model. While there are various types of bias that one

 could imagine (e.g., that the judge will use her rulings during the

 trial to punish perceived misbehavior during the discovery pro-

 cess), the evidence on confirmatory bias raises the possibility that

 the judge will form preconceptions during the discovery phase of
 litigation that will cause her to misread additional evidence

 presented at trial.

 Finally, the discovery process itself nicely illustrates how the

 polarization associated with confirmatory bias may have impor-

 tant implications. Discovery takes place when potential litigants
 think that a trial is relatively likely, and hence wish to engage in

 the costly effort of preparing for that trial. Nonetheless, litigants
 often settle their case out of court during or after the discovery
 process. Discovery encourages this settlement by promoting the

 exchange of information between the litigants and, hence, helping
 to align their perceptions of the likely outcome at trial. But while
 the evidence garnered during the discovery process sometimes
 does lead to settlement before trial, confirmatory bias suggests
 that the discovery process may be less efficient at achieving such
 settlement than would be hoped: if a piece of evidence is ambigu-

 ous, it may move the parties' beliefs farther apart. Each litigant
 will interpret the evidence through the prism of his or her own

 beliefs, and each may conclude that the evidence supports his or
 her case. More generally, efforts to reduce disagreements by
 providing evidence to the parties involved in a conflict may not be

 as easy to achieve as one would hope.
 Much of our discussion above implicitly makes an assumption

 about judgment whose psychological validity has not (to our
 knowledge) been determined by research: that somebody design-
 ing an institution is aware of the bias of others. We suspect that
 usefully incorporating confirmatory bias into economic analysis
 will depend upon the extent to which people believe that others
 suffer from confirmatory bias. It could be that people are well
 aware of biases in others'judgment, or that people are unaware of

This content downloaded from 129.2.29.202 on Mon, 03 Dec 2018 18:59:22 UTC
All use subject to https://about.jstor.org/terms



 72 QUARTERLY JOURNAL OF ECONOMICS

 the general tendency toward confirmatory bias.28 Investors who
 hire a money manager might or might not believe that the money
 manager suffers from a confirmatory bias (and is therefore prone
 toward overconfidence). A principal hiring an employee to make
 decisions might or might not know that the employee will be prone
 to making such errors. By the logic of economic models that
 involve multiple agents, these distinctions are likely to matter:

 Just as assuming that rationality is common knowledge is often
 very different than merely assuming that people are rational,
 assuming that agents are aware of others' irrationality may be
 very different than merely assuming that people are irrational.

 How might economic implications depend on people's aware-
 ness of others' confirmatory bias? One possibility is that people
 might exploit the bias of others. A principal may, for instance,
 design an incentive contract for an agent that yields the agent
 lower wages on average than the agent anticipates, because the

 agent will be overconfident about her judgments in ways that may
 lead her to exaggerate her yield from a contract. Conversely,

 others may wish to mitigate bias rather than exploit it. A principal
 may be more concerned with overcoming costly bias of an agent
 than with exploiting it, and design contracts that avoid errors.

 APPENDIX 1: DIFFERENTIAL-STRENGTH SIGNALS AND
 UNDERCONFIDENCE

 If the agent receives signals of different strengths in different
 periods, it is possible that the agent will be underconfident in his
 belief about which of the two states is most likely. Suppose, for

 example, that the agent receives three signals st E la,bl, t E {1,2,31.
 Suppose that the first two signals are distributed according to

 prob (st = a A) = prob (st = bIB) = 0 > 0.5, t E 11,21, but that the
 agent's third signal is distributed according to prob (s3 = a A) =

 prob (s3 = b1B) = 03/[03 + (1 - 0)3]. That is, the agent's third
 signal is three times as strong as first- or second-period signals. As
 before, with probability q > 0 the agent misreads signals that
 conflict with his belief about which state is more likely. (This

 28. Unfortunately, while this issue may turn out to be central to economic
 applications of confirmatory bias (and to applications of other psychological
 biases), we have not found psychological research that convincingly resolves this
 issue. There is a small literature in "construal" that concerns third-party aware-
 ness of biases. See, e.g., Ross [1987], and tangentially Paese and Kinnaly [1993].
 We have not found investigation of this issue in the context of confirmatory bias or
 overconfidence.
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 means that the probability of misreading is independent of the

 strength of the signal.)

 Suppose that the agent perceives that his first two signals

 support Hypothesis B, while his third signal supports Hypothesis
 A. Formally, the agent perceives (u1 = 3,u2 = 3,93 = a). Given
 these perceived signals, the agent's posterior likelihood ratio is

 A(s, = b,s2 = b,s3 = a) = 0/(1 - 0) > 1. Now, suppose that a
 Bayesian observer knows both that the agent's posterior likeli-
 hood ratio is A = 0/(1 - 0) and that the agent suffers from
 confirmatory bias. Given the distributions of the signals, the

 observer is able to infer that the agent has perceived (Gr = A,
 U2 = 3, 3 = a). Then, the observer's belief regarding the relative
 likelihood that the state is x = A versus x = B is given by

 (1 - 0)(1 - 0 + q0)(1 - q)03
 A*(bf3,t = 0}(0 + q(1 - 0))(1 - q)(1 - 0)

 (1 - 0 + q0)02 0

 (0 + q(1 - 0))(1 - 0)2 1-0' Vq E (0,1].

 Therefore, given what she infers about the agent's sequence of
 perceived signals, a Bayesian observer believes that the biased
 agent is underconfident in his belief that the true state is A.

 This underconfidence result arises here because the observer
 infers the exact sequence of the agent's perceived signals from his

 likelihood ratio. In this light, the results here are the same as the

 path-dependent underconfidence example in the text-if the
 agent is known to have only recently come to believe in a
 hypothesis, then he will be underconfident. In our main model, in
 which the agent receives signals of equal strength, an observer
 who knows the agent's beliefs cannot infer the exact sequence of
 the agent's perceived signals.

 While there may be some domains in which this differential-
 signal model is applicable, constructing examples of underconfi-
 dence seem to require clever contrivance. It is first of all clear that
 the "overconfidence" result will be stronger than the underconfi-
 dence result in one sense: in the model of this paper, the
 overconfidence result holds for all final beliefs by the agent. Any
 underconfidence example will clearly hold for only some final
 beliefs-because it will always be the case that a confirmatory
 agent is overconfident when all his perceived signals favor one
 hypothesis.
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 We suspect, moreover, that more complicated and weaker
 versions of Proposition 1 will hold in more general models. The

 underconfidence result seems to rely on the agent having received
 a small number of signals, where certain final beliefs can only be
 generated by a unique path of updating. Consequently, it is very
 likely that a "limit overconfidence" result would hold-once an
 agent is likely to have received large numbers of signals of all
 strengths, we can assure that A* < A when A > 1.

 APPENDIX 2: PROOFS

 Proof of Proposition 1. We first notice that

 np

 prob (n,,,nI A) = a prob (i,i A)c(na - nfl,,n, + nf - 2i)
 i=o

 * O[O + q(1 - 0)]no,-1-i[(l - q)(1 - 0)]np-i

 and

 no

 prob (n,,,np 1B) = a prob (i,i IB)c(na - nfl,,n, + nf - 2i)
 i=O

 * (1 - 0)[(1 - 0) + q0] n-l-i[(1 - q-)]n-i

 where c(na - n p,n, + np - 2i) is the number of ways to choose
 no - np more a signals than b signals in n, + np - 2i draws
 without ever having chosen an equal number of a and b signals,
 and prob (i,i Ix) is the probability of observing i perceived a and i

 perceived b signals in 2i draws when the true state is x E IA,BJ.
 Given the symmetric distribution of the signals, prob (ii A) =

 prob (ii B).29 Therefore, prob (n, ,npA) and prob (naL,nplB) differ

 29. Formally,

 i i-j max{i-j-k-1,O)J

 prob (ii A) = prob (iji B) = I I I
 j=O k=O i=O

 djkloiO**k((l - q)(1 - 0))-+(l - q)O)i

 The coefficient djkl is the number of ways to choose j signals in favor of the correct
 hypothesis when the agent believes the two hypotheses are equally likely, k biased
 signals favoring the correct hypothesis, i -j - k - 1 signals in favor of the incorrect
 hypothesis when the agent believes the two hypotheses are equally likely, 1 biased
 signals in favor of the incorrect hypothesis, j + k unbiased signals opposing a
 belief in favor of the correct hypothesis, and i - j - k unbiased signals opposing a
 belief in favor of the incorrect hypothesis.
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 only by the effect of the signals that the agent perceives after the
 last time that he believes the two hypotheses are equally likely.

 Using Bayes' Rule,

 (1.1) A*(nanp =) prob (n,,np JA)
 ( ) ( prob (n,;np B)

 Jino prob (i,i A)c(n, - np,n, + nfl - 2i)
 0[0 + q(1 - 0)]flo 1-i[(l - q)(1 - 0)]np-i

 in0 prob (i,ijB)c(n, - npn,, + nfl - 2i)(1 - 0)
 * [(1 - 0) + q0]nt-1 [(1 - q)0]`0

 Because [0 + q(1 - 0)]/[(l - 0) + q0] < 0/(1 - 0), Vq E (0,1],
 it follows that

 (1.2) [0 + q(1 - 0)]nx-1-i(1 - O)nx-l-i C [(1 - 0) + qf0not-1-if0nt-1-i

 with a strict inequality for i = 0 since the hypotheses imply that

 n- 2. Factoring and multiplying (1.2) by (1 - 0)(1 - q)nf-i and
 rearranging, we have

 (1.3) O[O + q(1 - 0)]nf-l-i(l - q)np-i(l - O)np-i

 0 Xnu-np,

 ? (1 - 0)[(1 - 0) + q0]n,-1-i(1 q)np-ionp-i 1 0

 Vi, with a strict inequality for at least i = 0 since n, - 2. Using

 (1.1), (1.3), and prob (i,i JA) = prob (i,i B),

 Jin,0 prob (i,ijA)c(n, - n p,n,a + np - 2i)(1 - 0)
 * [(1 - 0) + q0]n-1-i(1 - q)np-iOnp-i(0/(j - 0))n--np

 A*(fla,flX) K
 Jind prob (i,ilB)c(n, - n p,nc, + np - 2i)(1 - 0)

 [(1 - 0) + qO1] n1u-i(l - q)n-ionp-i

 f0 nuf-np

 = (1 ~- 0 = A(n,,,np).

 Proof of Proposition 2. Clearly limE 0 A*(nlOI 1 - E,1 - E) =
 ooVnL > 0 and limE O A*(n,,1 11 - E,1 - E) = (nc, + 1)/(n, - 1)V
 n,> 1.

 It can be shown that, if the agent's current beliefs are that

 A and B are equally likely, and A is true,

 then the probability that the next signal is a o 1 is 3 = E
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 A and B are equally likely, and B is true,

 then the probability that the next signal is a = E is 3 1
 A is probably true, and A is true,

 then the probability that the next signal is ao 1 is 3 =2
 A is probably true, and B is true,

 then the probability that the next signal is ao 1 is 3 E
 B is probably true, and A is true,

 then the probability that the next signal is a. E is 3 1
 B is probably true, and B is true,

 then the probability that the next signal is a = E2 is 3 1.

 From these numbers we can calculate that, if na > nf,

 Suppose that A is the true state. Consider all paths u* such

 that (1) &i = 3 and (2) there is always a strict majority of 3

 signals until 2np - 1 signals, after which all signals are a.
 Then the probability of any particular path ua is about Enp+.

 All other paths each occur with probability on the order of
 En+2 or greater when n :- 2.

 Suppose that B is the true state. Consider all paths u** such

 that (1) u** = a and (2) there is always a strict majority of a.
 signals. The probability of any particular path u** is about
 En+l. All other paths each occur with probability on the

 order of enp+2 or greater when n :- 2.

 To show that A*(nf,n l 1 - El - E) < 1 with np 2, therefore,
 we need only to show that the number of paths of type u** is
 strictly greater than the number of paths of type u*. This is easy to

 verify. For every particular path of type u*, there exists a path of

 type u** that is the mirror image of that path for the first 2np - 1
 signals (replacing each a with a ( and each ( with an a), and

 whose last no - np + 1 signals consist of na - np - 1 &t's followed by
 2 3's. In addition, there will exist at least one more path of type

 u**; for instance, n, &t's followed by np 3's.

 QED

 Proof of Proposition 3. The proof is by induction. Define A(n)
 as the agent's relative likelihood ratio after observing n signals.
 Suppose that A(1) > 1. Then a Bayesian observer infers that the
 agent observed a single true "a" signal, and A*(1) = 0/(1 - 0) > 1.
 Now suppose that A(n), A*(n), and A(n + 1) > 1. We must show
 that A*(n + 1) > 1. First, suppose that n is an even number.
 Because A(n) > 1, after period n the agent has perceived at least
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 two more "a" signals than "b" signals. Therefore, knowing only
 that A(n) > 1, a Bayesian observer's relative likelihood ratio,

 A*(n) = prob (x = A)/prob (x = B), is given by

 jn/0)-1 =o p(iiIA)c(n - 2j,n - 2i)
 O[O +q(1 o)]nli (1 - q)j-'(1 - 0)i-i pA(W

 (3.1) A*(n) . [ + q(l - 0)]nj _
 Ej/=01 4=0p(iiJB)c(n - 2j,n - 2i)(1 - 0) p '

 [(1 - 0) + q0]1n-l-j-i(1 - q)i-i-'

 where p(i,i x) and c(,) are defined as in the proof of Proposition 1.
 Define pX(n) as the probability of perceiving a (strict) majority of

 "'" signals in n draws given the state x E IA,B1. Then A*(n + 1) is
 given by

 3 2P(n) + p(n/2,n/2_A)0
 (3.2) A*(n + 1) =pB(n) + p(n/2,n/2 IB)(1 - 0)

 Becausep(n/2,n/2 A) = p(n/2, n/2 B) and 0 > 0.5, A*(n + 1) >
 1 follows immediately from the hypothesis that A*(n) > 1, which
 implies that pA(n) > pB(n).

 Now suppose that n is an odd number. Because by hypothe-
 sis A(n) > 1, after period n the agent has perceived more "a" than
 "b" signals. Therefore, knowing only that A(n) > 1, a Bayes-
 ian observer's relative likelihood ratio, A*(n) = prob (x = A)/prob
 (x =B),isgivenby

 y(n-1)/2 >20p(ii A)c(n - 2j,n - 2i)

 * O[0 + q(1 - 0)]n-l-j-i(1 - q)j-i(1 - O)ji pA( )
 (3.3) A*(n) = 1)2V p (3.3) (J 0p(i,i B)c(n - 2j,n - 2i)(1 - 0) pB(n)

 * [(1 - 0) + q0]n--J-i(1 -q)i-i-i

 Meanwhile, A*(n + 1) is given by

 pAWn - 1%n-l)/2 p(i,i A)c(1,n - 2i)

 * 0[0 + q(1 - 0)]((n-1)/2)-i[(- q)

 (1 - 0)]((n-1)/2)-i(1 - q)(1 - 0)

 (3.4) A*(n + 1) = pB(n) - ,%1)'2p(i~ilB)c(1n - 2i)

 * (1 - 0)[(1 - 0) + q0]((n-1)l2)-i

 rv 1 - q al((n-1)/2)-it 1 - q)O
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 Because A*(n) > 1 implies that pA(n) > pB(n), in order to

 establish A*(n + 1) > 1 it is sufficient to show that

 (n- 1)/2

 (3.5) 1 p(i,i A)c(1,n - 2i)0[0 + q(1 - 0)]((n-1)/2)-i[(l - q)
 i=O

 * (1 - 0)]((n-1)/2)-i(l - q)(1 - 0)

 (n - 1)/2

 I p(i,i B)c(1,n - 2i)(1 - 0)[(1 - 0)
 i=0

 + q-0]((n-)/2)-i[(1 - q)0]((n-)/2)- q)0.

 Using the fact that p(i,i, A) = p(i,ijB) and canceling like
 terms, the inequality in (3.5) is satisfied if

 [0 + q(1 - 0)]((n-1)/2)-i(l - 0)((n--)/2)-i

 ? [1 - 0 + q0]((n-i)2)-l0((n-1)/2)-i Vi {0, . .. , (n - 1)/21.

 But this inequality is always satisfied because (0 + q(1 - 0))/
 ((1 - 0) + qO) < 0/(1 - 0)Vq E (0,1]. Therefore, A*(n + 1) > 1.

 QED

 Proof of Proposition 4. The first hypothesis implies that 0* >

 0.5, and therefore, using Lemma 1, Pw satisfies

 PW = (1 - 0) * [(1 - p(l,*0)) + p(l,0*) * PW]

 + 0 * [p(l,0) * PW]

 or

 (1 - 0) (1 - ((1 - 0*)/0*))

 W (1 - (1 - 0) ((1 - 0*)/0*) - 0((1 - *)/O**))

 Pw> 0 because 0** > 0.5 for all q - 0.
 The second hypothesis implies that 0* _ 0.5, and therefore,

 using Lemma 1, Pw satisfies

 PW = (1 - 0) Pw + 0 [p(l,0**) *PW].

 Pw = 0 because p(1,0**) < 1.

 QED

 Proof of Proposition 5. Ignoring integer problems, and since
 q > 1 - 1/(20) for the cases we consider below, the definition of
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 D(y) and Lemma 1 imply that

 ' - 0* D(z) [1 - 0] D(z)

 Pw(y) = 1 - ot + I t Pw(0.5) > 0.

 (i) Note that limq-1 0* = 1 for all (jt,0). Therefore, for q
 sufficiently close to 1, Pw(u) can be made arbitrarily close to 1.

 (ii) Note that limo0.5 0*> 0.5 and limo0.5 D(j) = oo for all
 (u,q). Therefore, for 0 sufficiently close to 0.5, Pw(u) can be made
 arbitrarily close to 1.

 QED

 Proof of Proposition 6. (i) Fix 0 E (0.5,yu ]. The result follows
 directly from the fact that the principal's payoff from having the

 agent observe signals, H(0,q) = ,u*(0,q)u(WR) + (1 - y*(Oq))u(O),
 is continuously monotone decreasing in q, with H1(0,1 - 1/20) >
 u(W) and H(0,1) _ u(W). (ii) Fix q E (0,1]. The result follows
 directly from the fact that H(0,q) is continuously monotone
 increasing in 0, with H(0.5,q) ? u(W) and H(u,q) > u(W).

 QED

 Proof of Proposition 7. The proof is by construction. In order

 to establish the result, it is sufficient to show that there exists a
 function g() such that

 g(u(WR) - g(u(W)) 1 - ,u*(0,q)

 g(u(W)) - g(u(0)) ,u*(0,q)

 Define the function g() as

 fx,x ? u(W)

 g(x) - u(W) + E(x - u(W)),x > u(W).

 Clearly,g' > 0,g" ?0, and

 g(u(WR) - g(u(W)) E(U(WR) - u(W)) 1 - ,u*(0, q)

 g(u(W)) - g(u(0)) u(W) - u(0) t*(O, q)

 for E sufficiently small. Parts (ii) and (iii) follow directly from
 concavity of g() and Theorem 1 in Pratt [1964].

 QED

 UNIVERSITY OF CALIFORNIA, BERKELEY

 EMORY UNIVERSITY
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