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We explicit the link between epidemiological theory and reduced

form estimations to assess the impact of mitigation policies on

health outcomes. We identify three main caveats. First, reduced

forms are subject to an omitted variable bias and consequently fail

to estimate causal treatment effects. Second, identifying relevant

control groups in the early stages of the epidemic is challenging.

Third, agnostic reduced forms are of limited relevance to extrapo-

late the mid to long-run consequences of mitigation policies. Via

simulations, we find that the omitted variable bias is potentially

sizable and may result in misleading policy conclusions.
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The current COVID-19 pandemic poses a major and global health issue. As

most non-pharmaceutical interventions to contain the pandemic involve an eco-

nomic slowdown and a restriction of individual liberties, governments are facing

an uneasy trade-off between the health benefits and the economic costs that these

policies entail. Lockdown policies, in particular, may come at a high economic

cost. Given the stakes, rigorously assessing the effectiveness of such policies is

critical.

Multiple studies in the economics literature have relied on two-way fixed effects

linear models to assess the causal impact of various mitigation policies on health

outcomes. These studies rely on the spatial heterogeneity and timing of policy

responses to identify treatment effects. They typically take the following form:

(1) log(confirmed cases) = policy + controls + fixed effects + error

As such methods are usually not grounded into epidemiological theory, we refer

to them as agnostic reduced forms. This paper shows, both theoretically and on

simulated data, that agnostic reduced-forms generally fail to identify treatment

effects and deliver a sensible counterfactual analysis.

To make our case, we consider the Susceptible-Infected-Recovered-Deceased

(SIRD) model as a benchmark for epidemic dynamics and derive a simple frame-

work to think of policy evaluation in this context. Somewhat abusively, the

observable inflow of new confirmed cases at each period may be written:

(2) confirmed cases = tests× contacts× policy× infected× susceptible

Equation (2) has one major implication for reduced forms captured by Equa-

tion (1). As both the number of infected and susceptible individuals are unob-

served and correlated to explanatory variables, agnostic reduced forms are subject

to an omitted variable bias. It produces erroneous estimates of treatment effects,

as well as uninterpretable geography and time fixed effects. In turn, resulting
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counterfactuals may suggest misleading policy conclusions.1

To get a sense of the magnitude of the bias, we simulate datasets from a SIRD

data-generating process. In our simulations, we allow for a direct decreasing

effect of mitigation policies on the contact rate. We also allow for a behavioral

response of the population, which is unrelated to the policy implementation.2 All

other endogeneity channels are shut down: there are no spillovers, the timing of

mitigation policies is random and testing capacity is constant across geographical

units and over time. We thus consider the ‘best of worlds’. We find that difference

in differences as well as event studies fail to capture the true effect of the policy,

in magnitude and sometimes even in sign. Though synthetic controls rely on a

different empirical specification, they also largely fail to reconstruct a sensible

counterfactual.

In addition, we highlight two additional caveats of reduced form estimations.

First, identifying relevant control groups is challenging, as drastically different

geographical units may display quite similar epidemic trends in the early stages

of the epidemic. Second, since reduced form estimates are not closely tied to

structural model parameters, they are of limited policy relevance to extrapolate

the mid to long-run consequences of mitigation policies.

The rest of this paper is organized as follows. Section 1 reviews the literature.

Section 2 discusses policy evaluation in the context of a pandemic. Section 3

focuses specifically on agnostic linear reduced forms and attempts to clarify their

theoretical underpinnings. Section 4 presents simulation results. Section 5 ad-

dresses additional caveats of reduced form estimations. Section 6 concludes and

discusses avenues for future research.

1Our result does not stem from obvious threats to identification, such as spillover effects, endogenous
timing of mitigation policies or variations in testing capacity over time.

2This behavioral response may be thought of as a gradual change in behaviors as people learn to live
with the threat of the disease.
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I. Literature Review

Multiple studies in the economics literature rely on reduced form estimations

to assess the causal impact of mitigation policies (e.g. face mask mandates, lock-

downs) on health outcomes. They typically exploit the staggered implementation

of mitigation policies across geographical units to estimate treatment effects and

conduct counterfactual analysis. Most studies work with two-way fixed effects

estimators (Hsiang et al., 2020; Dave et al., 2020; Fowler et al., 2020; Villas-Boas

et al., 2020; Courtemanche et al., 2020; Lyu and Wehby, 2020; Karaivanov et al.,

2020). Alternatively, a smaller set of papers relies on synthetic control methods

(Friedson et al., 2020; Mitze et al., 2020). There is an apparent growing consen-

sus that mitigation policies significantly reduce the spread of the disease. Though

estimations vary drastically across settings and methodologies, the effects uncov-

ered are generally sizable. For instance, Hsiang et al. (2020) estimate mitigation

policies prevented (or delayed) approximately 61 million confirmed cases in a

sample of six countries.

This paper provides two insights to this nascent literature. First, though re-

sulting estimates have sometimes been interpreted as variations in the theoretical

contact rate (Hsiang et al., 2020), we show that the link between agnostic re-

duced forms and epidemiological theory is tenuous. In fact, agnostic reduced

forms are not related to the theoretical parameters of SIR-type models. Second,

given that the focus of most studies has been on counterfactual analysis, we show

that counterfactual exercises based on agnostic reduced forms are unreliable. In

turn, previously established estimates should be interpreted with caution.

To bridge the divide between reduced-forms and structural approaches, recent

contributions have combined structural econometrics with variants of SIR models

to evaluate the efficiency of mitigation policies. On the one hand, Chernozhukov,

Kasahara and Schrimpf (2021) outline a structural econometric model which ex-

plicitly assumes how information, policies and behavioral responses dynamically

determine the spread of the disease. The resulting empirical specification is moti-
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vated by the SIRD model, but ultimately makes different parametric assumptions.

The authors highlight the importance of information and behavioral responses,

but nonetheless conclude mitigation policies effectively reduced the spread of the

disease in the United States. On the other hand, Allcott et al. (2020) explicitly

combine a reduced-form estimation with a simplified SIRD model. They find

modest mitigation policy effects and argue that most social distancing is driven

by voluntary responses in the United States.

The latter study is closely related to this paper. The authors note that agnostic

event studies may give bizarre results in the context of an epidemic, though

they do not provide a formal theoretical explanation. This paper builds on their

intuition and extends their observation to other types of reduced forms, such

as general two-way fixed effects linear models and synthetic controls. We also

provide a theoretical explanation for the poor performance of agnostic reduced

forms in this context.

II. Policy Evaluation During a Pandemic

In this section, we introduce a simple of model of epidemic dynamics and discuss

the main threats to identification of treatment effects.

A. A Model of Epidemic Dynamics

Consider a discrete-time Susceptible-Infected-Recovered-Dead (SIRD) model

(Kermack and McKendrick, 1927). Denote St, It, Rt, and Dt the number of sus-

ceptible, infected, recovered, and deceased individuals at time t. The population

may be written:

N = St + It +Rt +Dt
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For all periods t, dynamics of the epidemic are modeled as follows:

It+1 = It + βtSt
It
N
− γIt

St+1 = St − βtSt
It
N

Rt+1 = Rt + (1− µ)γIt

Dt+1 = Dt + µγIt

βt is the contact rate which captures the rate at which infected individuals

transmit the disease to susceptible individuals in period t, γ is the inverse of the

recovery time for infected individuals and µ is the mortality rate of the disease.

Epidemics usually display non-linear dynamics, which are determined by the time-

varying basic reproduction number:

R0t =
βt
γ

The contact rate βt is of particular interest, as it is likely an endogenous variable

in the model. A change in the contact rate will change the shape of the entire

epidemic curve for all subsequent periods in a non-linear fashion.

B. Mitigation Policies and Confounding Factors

Consider an analyst wishes to inform a policy maker on the impact of a di-

chotomous mitigation policy P on health outcomes Y(P). The policy’s causal

effect may be thought of as Y(1)−Y(0). The fundamental problem of causal in-

ference is that Y(1) and Y(0) are not observed simultaneously for the same unit.

The analyst’s main concern is therefore to find a counterfactual for Y - which we

denote Ŷ(0) - for the treated unit (Rubin, 1974).

The mitigation policy’s primary objective is to decrease the contact rate, but

little is known on other potential determinants of social distancing. We find it

useful to think of βt as the product of an unknown function G, in which Xt is
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a vector of variables which could influence the population’s behavior (e.g. the

number of recorded deaths, public medical information, disinformation on social

media, government announcements), and the effect τ of a mitigation policy Pt:

βt = G(Xt) exp(τPt)

Though the analyst observes whether the policy was implemented, she does not

know what would have been the contact rate without a policy implementation (as

G is unknown). In epidemiology, researchers sometimes assume that the contact

rate would have remained the same without a policy implementation to conduct

counterfactual analysis.3 This is a strong assumption and social scientists would

expect behavioral responses unrelated to the mitigation policy. In turn, the an-

alyst is likely to attribute part of the effects of changes in X over time to the

policy’s success or failure, as portrayed in Figure 1.

To overcome this issue, several reduced-form approaches have been used in the

economics literature. Difference-in-differences and event studies compare out-

comes of geographical units with a mitigation policy to geographical units with-

out a mitigation policy over several time periods. Alternatively, synthetic control

methods attempt to build a synthetic counterfactual for geographical units which

implement a mitigation policy based on the observed outcomes of multiple geo-

graphical units which have not implemented such policies. Such methods could

potentially account for changes in outcomes which are not attributable to the

policy, and we thus study them in greater detail in the next section.

III. Epidemiological Theory and Agnostic Reduced Forms

In this section, we focus on agnostic linear models and their link with epidemio-

logical theory. We show that agnostic reduced form estimations are subject to an

3For example, Flaxman et al. (2020) write: ‘Our methods assume that changes in the reproductive
number – a measure of transmission - are an immediate response to these interventions being implemented
rather than broader gradual changes in behaviour.’
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Figure 1. : Treatment Effects and Confounding Factors

Notes: Figure 1 presents the evolution of an epidemic under three different sce-

narios: (1) a policy is implemented and there is an additional confouding factor;

(2) no policy is implemented and there is an additional confounding factor; (3) no
policy is implemented and there is no confouding factor. The confounding factor

increases social distancing over time with or without a mitigation policy. If an
analyst assumes no confounding factor for counterfactual analysis, then the third
scenario may be thought of as the estimated counterfactual Ŷ(0) for the first sce-

nario Y(1), and the second scenario may be thought of as the true counterfactual

Y(0). In this example, the analyst would largely overestimate the effect of the
mitigation policy.
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omitted variable bias, which in turn affects the identification of treatment effects

and downstream counterfactual exercises.

A. General Specification

Denote Yi,t the outcome of interest for unit i at time t, Ei is the time for unit i

to initially implement a mitigation policy. δi and δt are respectively unit-specific

and time fixed effects, and E is a set of intervals. Whether an analyst uses an

event study or difference-in-differences, the specification will take the following

general form:

(3) Yi,t = α0 + δi + δt +
∑
g∈E

τg1{t− Ei ∈ g}+ εi,t

Denote X the matrix of all explanatory variables in the model. The core as-

sumption to identify treatment effects is that the error term ε is orthogonal to

explanatory variables X in the model.

B. Dependent Variables

Unfortunately, the contact rate, as well as the number of infected and sus-

ceptible individuals is generally unobserved. The analyst typically observes the

number of confirmed infectious cases Ct (and the number of deceased individuals

Dt) as the epidemic unfolds. It is quite natural to use a transform of Ct as a

dependent variable, which we denote Yt. In previous studies, the two preferred
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dependent variables are:4

(4) Yt = log(Ct)

(5) Yt = ∆ log(Ct)

Equation (4) is an approximation of the percentage change in confirmed cases Ct,

whereas Equation (5) is an approximation of the change in the growth rate from

period t− 1 to period t.

To link confirmed cases Ct with the SIRD model, we assume a proportional

relationship between new infected individuals and confirmed cases in each period

t.5 Our main quantity of interest is therefore simply a proportion θt of new

infected individuals in period t:

Ct = θtβtSt
It
N

Previous contributions have assumed that Ct = θtIt (Chernozhukov, Kasahara

and Schrimpf, 2021; Hsiang et al., 2020). This implies that infectious individuals

could be tested positive more than once over the span of multiple time peri-

ods, which we deem unlikely in this context. Furthermore, in the SIRD model,

new infected individuals is the only quantity which may be written as a linear

combination when taking the log, and thus which does not violate the linearity

assumption in linear regression models.

4Note that Ct is often replaced by the number of deceased patients, Dt. Since Dt is a function of
infected individuals It, the remarks from this paper also apply to dependent variables using a transform
of deceased individuals (see appendix A for further details). For synthetic control methods, some studies
have also worked with the cumulative number of confirmed cases:

Yt =
t∑

k=0

Ck

5We assume that a fraction of newly infected individuals are directly tested positive in the same
period. This is purely for clarity of exposition. We note that our results would remain unchanged if we
were to specify a lag between the period of infection and the period of testing positive.
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In the rest of this paper, we thus mainly focus on the log and the log-differences

of Ct as our dependent variable. To get a better sense of these dependent variables,

let us decompose the log of new confirmed infectious cases. Assume that death

and recovery rates are common to all geographical units and constant over time.

Indexing geographical units by i, we may then write:6

(6) log(Cit) = log(θit) + log(G(Xit)) + τPit + log(Iit) + log(Sit)− log(Ni)

According to an epidemiological data-generating process, the log of newly infected

individuals is a function of testing capacity, of the current contact rate (poten-

tially impacted by a mitigation policy), of the number of infected individuals, of

susceptible individuals and of the population size for geographical unit i.

C. The Omitted Variable Bias

Equation (6) has a direct consequence for agnostic linear regression models cap-

tured by Equation (3). As the number of infected individuals It and susceptible

individuals St are unobserved, reduced forms captured by Equation (3) cannot

account for these quantities. Furthermore, both It and St are determined by the

entire history of contact rates {β}t = {β0, β1, ..., βt}. Thus It and St are corre-

lated to the policy dummy Pt. In turn, agnostic reduced forms are subject to an

omitted variable bias and estimations will result in erroneous treatment effects.

In addition, this complicates the interpretation of time fixed effects common to

all geographical units. As time dummies are also correlated to It and St, they

generally soak up part of the treatment effect. In turn, time fixed effects may

not be interpreted as ‘the shape of the epidemic curve if there were no mitigation

policy’ or simply as ‘shared temporal shocks across geographical units’.

6A similar decomposition may be obtained for the approximation of growth rates:

∆log(Cit+1) = log(
θit+1

θit
) + log(

G(Xit+1)

G(Xit)
) + log(

1 + τPit+1

1 + τPit
) + log(

Iit+1

Iit
) + log(

Sit+1

Sit
)
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The interpretation of geography fixed effects is also problematic. The con-

tact rate β affects non-linearly the entire shape of the epidemic curve. Different

contact rates across regions will produce different epidemic dynamics. In turn,

geography fixed effects may not control for ex ante differences in contact rates

across geographical units. This is true even if contact rates were to remain stable

over time within geographical units.

Finally, the role of additional control variables is unclear in this context. Mul-

tiple studies condition on observables, such as socio-demographic characteristics

(e.g. age structure, population, density), in an attempt to account for differences

in epidemic dynamics across geographical units. Time-invariant characteristics

may partly explain different ex-ante contact rates, which will ultimately affect

non-linearly the entire shape of the epidemic curve. In this case, as for geography

fixed effects, specifying a linear term is unlikely to be a satisfactory work around.

We leave this issue to future research.

IV. Simulations

In this section, we simulate a deterministic epidemiological model and assess

different specifications based on their resulting counterfactual. As expected, ag-

nostic linear models generally fail to identify treatment effects. In addition, the

bias can be sizable.

A. Simulation Parameters and Functional Forms

We allow for (i) a policy intervention and (ii) an unrelated behavioral response

of the population, which may be thought of as a time-varying confounding factor.

For convenience, we assume that β follows the following process:7

βit = β0 exp
(
δi + τPit − λt

)
7Little is known on the typical behavioral responses of citizens during pandemics, and how these

evolve with the epidemic outbreak. Note that the precise behavioral mechanism is of no importance for
the purpose of this paper.
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τ is the effect of the mitigation policy on the contact rate. In the absence of

a mitigation policy, the contact rate decays exponentially over time at rate λ. δi

are geography fixed effects which could capture cultural and/or socio-demographic

ex-ante differences in the population.8

Data is simulated for 50 time periods. In our simplest example (difference-

in-differences design), we simulate data for 2 geographical units. For all other

examples, we simulate data for 50 geographical units. For difference-in-differences

and the synthetic control, only one unit is treated in period 20. For event studies,

all geographical units are eventually treated and the timing of treatment for each

unit is drawn at random. In all cases, the policy reduces the contact rate by 20%.

Our simulated model abstracts from common endogeneity concerns expressed

in the literature (refer to section V.A). Mitigation policies are implemented at

random. Testing capacity is also fixed over time, across geographical units and

equal to 1 (geographical units systematically detect all new infected individuals).

Finally, there are no spillover effects. We investigate whether, in this ideal setup,

agnostic reduced forms would perform as expected.

Additional details and figures for our simulations may be found in appendix B.

We go through our main results in the Section IV.C.

B. A Metric to Assess Specifications

Policy makers are ultimately interested in comparing the estimated number of

infected individuals over time with and without the implementation of a mitiga-

tion policy. As such, any viable specification should allow for a reasonably precise

counterfactual analysis of these quantities. We thus compute a metric to assess

the precision of the counterfactual in our simulations.

Denote Y (0) the number of confirmed cases if the geographical unit were not

treated, Ŷ (0) its predicted value if it hadn’t been treated according to the fitted

8As shown in Appendix C, confirmed cases in logs as well as in growth rates are remarkably different
across US states in the early stages of the pandemic. In the SIRD model, such differences likely stem
from ex-ante differences in the contact rate across geographical units which we model via the geography
fixed effects.
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empirical model and T the total number of periods simulated.9 We define metric

M as:10

M =
1

T

∑
t

|Yt(0)− Ŷt(0)|
Yt(0)

Intuitively,M captures to what extent the fitted empirical model is on average

far from the true counterfactual value. The metric is normalized by the true

counterfactual value to get a sense of the magnitude of the bias.

C. Simulation Results

We run difference-in-differences, event studies and synthetic control methods

on our simulated datasets. Results for each empirical specification are presented

in Table 1.11

We make several observations for two-way fixed effects estimators. First, both

differences-in-differences and event studies do not capture the mitigation policy’s

effect on the theoretical contact rate. In this sense, they are not closely related

to theoretical parameters in SIR-type models. Using the log of new infected indi-

viduals, difference-in-differences results in a large, negative and significant effect

of the mitigation policy. When using log-differences, the effect of the mitigation

policy is dwarfed. This is expected in theory, as a permanent decrease in the con-

tact rate will only decrease the growth rate of new infections over one period. As

the difference-in-differences specification assumes a constant treatment effect in

the post-treatment period, the mitigation policy’s effect on growth rates is biased

downwards.

Turning to event studies, both specifications in logs and log-differences seem

to imperfectly capture the mitigation policy’s effect (See Figure 2), as estimates

reflect a negative effect on logs as well as log-differences after the policy implemen-

9One advantage of simulating data is that we can always observe both Y (0) and Y (1).
10Though our dependent variable is in logs or growth rates, we always translate into raw numbers of

confirmed cases to compute the metric.
11Appendix B presents each empirical specification. Further details, including figures of the raw data

and coefficient estimates, may be found in the Online Appendix.
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tation. However, confidence intervals are large despite the absence of noise in our

simulations and seem to also capture spurious time trends in the pre- and post-

treatment periods. As an element of comparison, we show the resulting estimates

of theory-driven reduced forms, in which we control for the omitted variables in

each specification.12

As researchers may not be interested in recovering the mitigation policy’s effect

on theoretical parameters, we also consider the accuracy of resulting counterfac-

tuals. This leads us to our second observation: the M metric is larger than zero

in all specifications, which implies large differences between the predicted coun-

terfactual Ŷ (0) and the true counterfactual Y (0). The metric ranges from an

average 7% up to 45% discrepancy per period.

Regarding synthetic control methods, we find that such methods may produce

unexpected results. The matrix completion method (Athey et al., 2018) fails

to identify the sign of the mitigation policy’s effect. The generalized synthetic

control (Xu, 2017) correctly captures the sign of the treatment effect, yet may

produce very reliable counterfactuals, as reflected by a metric of 344%.

V. Additional Issues

In this section, we address two additional issues related to agnostic reduced

forms: choosing control groups and extrapolations.

A. What Makes for a Valid Control Group?

To estimate treatment effects, researchers typically use geographical units with-

out a policy implementation as a control group for geographical units with a policy

implementation as a treatment group. In the context of an epidemic, we note that

valid control groups are hard to come by.

Researchers are aware of several limitations of their impact evaluation. We

start with the three most common threats to identification which have been pre-

12Note that controlling for these omitted variables is only possible if one estimates It and St. Since
we simulate our data, we have knowledge on these quantities.
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Table 1—: This table summarizes the results of the simulations. Estimates are
displayed with the standard errors in between brackets. For ”Event Study” spec-
ifications, the metric M displayed is an average of each metric associated to a
geographical unit. For additional details on our simulation results, see the Online
Appendix.

Specification Outcome Estimate M Metric

Difference-in-differences Logs -0.28 (0.06) 0.07

Rates 0.01 (0.01) 0.13

Event Study Logs See Figure 2 0.45

Rates See Figure 2 0.44

Generalized Synthetic Control Cumulative -680361 (135554) 0.08

Raw -71985 (135554) 3.44

Matrix Completion Method Cumulative 1439814 (135554) 0.90

Raw 85885 (135554) 0.76

viously identified in the literature. First, variations over time and space of testing

capacity may blur comparisons between and within groups. Second, the timing of

mitigation policies could well be endogenous and depend on a geographical unit’s

past health outcomes, economic circumstances and cultural preferences. Third,

spillover effects are a likely scenario for mobile populations. Though these three

confounding factors are important concerns to be addressed, they are not the

focus of this paper. Instead, abstracting from these concerns, we ask what would

theoretically be a valid control group for empirical analysis.

According to our epidemiological data-generating process, we find that common

trends in a logs or growth rates of confirmed cases are demanding. In fact,

different geographical units will follow similar epidemic trajectories if (1) the

contact, recovery and death rates are equal for all geographical units at all periods

and (2) the initial number of infected individuals as shares of the population are

equal for all geographical units. In practice, this is unlikely to be the case, as any

deviation for one of these parameters will have consequences on the entire shape

of the epidemic curve.

In many applications, researchers investigate the validity of the common trends
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Figure 2. : Event Study Estimates

Notes: This figure presents the results of event study specifications. Agnostic reduced forms

are presented on the left column. Theory-driven reduced forms are presented on the right

column. In the theory-driven specifications, we control for the relevant omitted variables.
The first row displays the results for logs of new infections as the dependent variable. The

second row displays the results for the delta logs of new infections as the dependent variable.
The vertical dashed line corresponds to the last period before treatment occurs. Standard

errors are clustered at the geographical unit level.

assumption in the pre-treatment period to assess the trustworthiness of their con-

trol groups. We note that apparent common trends may be misleading, notably

in the early-stage of the epidemic. At the start of the outbreak the number of

infected individuals is typically small and the susceptible population is close to

the entire population size, which may blur ex-ante differences across regions (in

particular if we were to add noise to the model). Figure 3 provides a graphi-

cal illustration. In such cases, a researcher could mistakenly attribute ex ante

differences across geographical units to the success (or failure) of a mitigation
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policy.

When it comes to growth rates, we note that similar epidemic trajectories

necessarily have the same growth rates at each point in time. In this sense, the

common trends assumption is not sufficient to conduct impact evaluation. On the

contrary, non-zero geographical fixed effects are likely to be a strong indicator of

ex ante differences across geographical units. In the case of the United States,

plotting the number of confirmed cases in logs or growth rates indicates potentially

large ex ante differences across geographical units (see appendix C).

Figure 3. : An Example of Apparent Common Trends

Notes: This is a graphical example of misleading common trends in logs (left panel) and delta logs

(right panel). Unit 1 (black line) has a baseline contact rate β = 0.3, whereas unit 2 (grey line)
has a 20% higher baseline contact rate than Unit 1. The treatment takes place at period 20 and

has a null effect on the contact rate, yet trends of both units largely diverge in the post-treatment

period.

B. Short vs. Long Run Consequences of Mitigation Policies

We raise one last drawback of agnostic reduced-forms: even if treatment effects

were to be estimated without bias, they are only valid within the time window of

the study. Yet, in the context of an epidemic, the number of averted infections at
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a given point in time will likely greatly differ with the eventual number of averted

infections by the end of the epidemic. A policy studied over a limited time horizon

(say the early stages of the pandemic), will have weaker effects over the long run

than estimated, because a fraction of infections are likely delayed rather than

truly averted (hence the ‘flatten the curve’ narrative). Given healthcare capacity

constraints, policy makers are certainly interested in the immediate effects of

mitigation policies. Nonetheless, if policy makers are also interested in the number

of infections averted by the end of the pandemic, agnostic reduced forms may not

inform them on the impact of the mitigation policy outside of the study period

considered.

VI. Conclusion

The COVID-19 pandemic has led to a vast research effort to provide policy-

makers with clear and reliable take-aways. Given the economic and social costs

implied by several mitigation policies, rigorously assessing their effectiveness is

critical. This paper sheds new light on the caveats of agnostic reduced-forms

commonly used in the economics literature.

The core of our analysis is centered around the study of the SIRD model, which

we see as a simple model to understand the dynamics of an epidemic. Based on

theory, we raise several expected shortcomings of agnostic reduced-forms. They

prove hard to interpret in light of epidemiological theory and are likely to produce

unreliable counterfactuals. We then provide evidence of these shortcomings on

simulated datasets. The bias can be sizable and could potentially lead to mis-

leading policy conclusions. In addition, we note that identifying relevant control

groups in the early stages of an epidemic is challenging. Finally, agnostic reduced

forms are of limited relevance to inform policy-makers on the mid to long-run

consequences of mitigation policies on health outcomes.

In many ways, these findings are reminiscent of old epistemological debates

between theory-driven and agnostic approaches to data. When we correctly un-



20

derstand underlying mechanisms, theory may be useful and policy relevant. We

conclude that a promising line of research is for economists to build causal frame-

works upon the existing structural modeling literature in epidemiology.
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Additional Technical Details on Dependent Variables

In this appendix, we derive the anlytical expressions for deceased individuals

according to our customized SIRD model.

New Deceased Individuals (Logs)

log(∆Dit+1) = log(µ) + log(γ) + log(N) + log(Ct)− log(G(Xit))− log(1 + τPit)

− log(Sit)− log(θit)

New Deceased Individuals (Approximation of Growth Rates)

∆log(∆Dit+1) = log(
Cit
Cit−1

)− log(
G(Xit−1)

G(Xit)
)− log(

1 + τPit−1

1 + τPit
)

− log(
Sit−1

Sit
)− log(

θit−1

θit
)
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Additional Material for the Simulations

B1. Parameter Choices

Data is simulated for 50 time periods. In our simplest example (difference-

in-differences design), we simulate data for 2 observational units of respective

populations 105 and 106, with respective initial infected populations of 100 and

1,000. Treatment occurs in period 20. For all other examples (event studies

and synthetic controls), we simulate data for 50 observational units. The size of

the population is drawn from a uniform distribution U(106, 107) and the share

of initially infected individuals from a uniform distribution U(0.0001, 0.001). We

also allow for geography fixed effects drawn at random from δi ∼ N (0, 0.1). For

the synthetic control, only one unit is treated in period 20. For event studies,

all geographical units are eventually treated and the timing of treatment for each

unit is drawn from a uniform distribution U(0, 50). In all cases, the policy reduces

the contact rate by 20%.

The baseline contact rate is set to β0 = 0.3. The learning parameter for the

behavioral response is λ = −0.002 (i.e. we assume people ‘learn’ social distancing

over time). Though, there is tremendous uncertainty on the values underlying

epidemiological models in the context of the pandemic (Atkeson, 2020), the exact

value is unlikely to matter for the purpose of this exercise. We consider γ and µ

as fixed over time (as there were no medical breakthroughs since the start of the

COVID-19 pandemic) and choose reasonably plausible parameter values based on

the literature. We set the inverse of the infection time γ = 0.1 and the death rate

µ = 0.01.

B2. Difference-in-differences

We run the following difference-in-differences specification on our simulated

dataset:

Yit = α+ δi + δt + τ1{t > 19}1{Pi = 1}+ εit
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Geographical units are indexed by i and time periods by t. Yit represents the

outcome considered (logs and growth rates). 1{t > 19} is an indicator variable

equal to 1 for the periods after the policy was implemented. 1{Pi = 1} equals

to one for treated geographical units and 0 otherwise. δi and δt are respectively

individual geography and common time fixed effects. τ is meant to capture the

average treatment effect of the policy.

B3. Event Study

We run the following event study specification on our simulated dataset:

Yit = α+ δi + δt +
k=20∑

k=−20,k 6={−1}

τe1{t− Ei = k}+ εit

Geographical units are indexed by i and time periods by t. Yit represents the

outcome considered (logs or growth rates). 1{t− Ei = k} is an indicator for the

days relative to the first day of the mitigation policy considered Ei. δi and δt are

respectively geography and time fixed effects. The first period before treatment

occurs is taken as the baseline. Time periods before k=−20 and after k=20 are

pooled in the 1{t− Ei = −20} and 1{t− Ei = 20} time indicators respectively.

B4. Synthetic Controls

Finally, we test the synthetic control methods proposed by Athey et al. (2018)

and Xu (2017). To remain close to previous empirical applications, we use alter-

natively the cumulative number of new infected individuals or the raw number of

new infected individuals as a dependent variable.
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Comparison to Real Data (United States)

Figure C1. : COVID-19 Confirmed Cases in the U.S.

Notes: This is a graphical overview of the US data, which may be freely down-
loaded at: https://covidtracking.com/data/download. Each line represents a US

state. Each row plots respectively the raw number of new confirmed cases, new
confirmed cases in logs and new confirmed cases in growth rates.


